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ABSTRACT 

According to current force health protection policy, the U.S. Army‟s Health Service 

Support system is designed to maintain a healthy force and to conserve combat strength of 

deployed soldiers. Specifically, this system remains particularly effective by employing 

standardized aeromedical evacuation assets and providing a responsive field-sited medical 

treatment facility for the wounded soldiers evacuated from the battlefield. Since the 

beginning of Operation Enduring Freedom, military commanders have faced a significant 

combinatorial challenge integrating limited air evacuation assets into a fully-functional, 

comprehensive system for the entire combat theatre. This work describes a robust, multi-

criteria decision analysis methodology using a scenario-based, stochastic optimization goal 

programming model that U.S. Army medical planners can use as a strategic and tactical 

aeromedical evacuation asset planning tool to help bolster and improve the current air 

evacuation system in Afghanistan. Specifically, this model optimizes over a set of expected 

scenarios with stochastically-determined casualty locations to emplace the minimum number 

of helicopters at each medical treatment facility necessary to maximize the coverage of the 

theatre-wide casualty demand and the probability of meeting that demand, while minimizing 

the maximal medical treatment facility evacuation site total vulnerability to enemy attack. 

Key Words: Goal Programming, Optimization, Stochastic Modeling, Decision Analysis, 

Medical Evacuation 
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1 INTRODUCTION 

1.1 BACKGROUND 

The United States Army is making remarkable strides in its systematic approach to delivering 

health care across a continuum of combat operations. According to current force health 

protection policy, the U.S. Army‟s Health Service Support (HSS) system is designed to 

maintain a healthy force and to conserve combat strength of deployed soldiers.  Specifically, 

the HSS system remains particularly effective by providing prompt medical treatment to 

prepare patients for evacuation, employing standardized air and ground medical evacuation 

assets, providing a responsive field hospital for the wounded soldiers evacuated from the 

battlefield, and providing various other health and preventive medicine services. 

Furthermore, the HSS system incorporates the maximum use of emerging technology to 

improve battlefield survivability (see Army Field Manual 4-02). 

Although more wounded soldiers survive compared to any other war because of the HSS 

system, the U.S. Army can still greatly improve its systematic approach to treat and evacuate 

casualties from combat zones. As a pillar of military medical doctrine, optimizing the 

emplacement of medical treatment and aeromedical evacuation (MEDEVAC) assets can 

increase casualty survivability given a set of resource constraints. Therefore, thorough 

investigation and development of improved analytical solutions derived from objectives 

concerning casualty coverage, resource utilization and vulnerability measures directly 

supports the military medical mission.  

Since the beginning of Operation Enduring Freedom (OEF) in Afghanistan, military 

commanders have faced a significant challenge integrating coalition medical assets into a 

fully-functional, interconnected HSS system for the entire OEF theatre.  In 2006, OEF 

battlefield responsibilities transitioned from a U.S. military command to a North Atlantic 

Treaty Organization (NATO) military command.  As per this changeover of command, the 

Combined Security Transition Command – Afghanistan (CSTC-A) desired an integration of 

limited MEDEVAC assets from each contributing NATO country into a comprehensive 

MEDEVAC system. Moreover, CSTC-A faced an immense combinatorial problem given the 

number of potential MEDEVAC helicopter locations, the number of different aircraft models 

for employment and its associated constraints, the potential sites for casualty sustainment, 

and the number of supporting Medical Treatment Facility (MTF) locations. 
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1.2 PROBLEM DEFINITION 

CSTC-A and the Central Command (CENTCOM) requested an analytical methodology to 

tackle the following problem:  

Given a distribution of MEDEVAC missions, where do coalition forces position several 

different model types of helicopters amongst various possible locations to minimize the time 

from injury occurrence to arrival at a MTF? Given that positioning, what percent of 

MEDEVAC missions can be supported in less than or equal to two hours from the time of 

soldier injury to arrival and patient drop-off at the closest MTF site? 

Zeto et al. (2006) at the U.S. Army Center for Army Analysis (CAA) first tackled this 

problem by developing the following research questions: 

1. What locations constitute the subset of the possible locations at which helicopters 

should be emplaced? 

2. For each selected location, what model aircraft should be emplaced at each? 

3. How many aircraft should be emplaced at each selected location?   

From these research questions, CAA‟s analysts developed a methodology consisting of a 

multivariate hierarchical cluster analysis, a Monte Carlo simulation, and a dual-criteria goal 

program. Also, Fulton et al. (2009) at the U.S. Army Center for Army Medical Department 

Strategic Studies (CASS) developed a different methodology to tackle a similar problem 

concerning medical evacuation and mobile hospital asset planning for steady-state combat 

operations in Iraq. Following examination of the analysis results from both CAA and CASS, 

several areas for model extension and further analytical investigation arose.  

1.2.1. MOTIVATION 

Therefore, this work serves as a combination and extension of the analysis methodologies 

performed by CAA and CASS. First, we expand the goal program to account for MTF site 

vulnerability associated with the amount of enemy activity per Afghan province where 

MEDEVAC operations are conducted to and from each MTF evacuation site, and we 

incorporate goal priority weights into the modeling objective. A second area of motivation 

involves reformulating the model to account for future uncertainty by optimizing over a set of 

expected scenarios based on specific Design of Experiments (DOE) factors, making the 

model robust and keen for both strategic and tactical MEDEVAC asset planning and 
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decision-making. Third, we use a multi-stage stochastic modeling approach that first 

determines the casualty demand locations and respective monthly casualty demand, and then 

we execute the second-stage of the model based on the first decision; we also modify the 

original data parameters to account for stochastic effects.  Fourth, we expand the model by 

integrating a multi-use, decision-analysis tool with statistical analyses of the modeling results 

in order to assist the user in his or her decision-making process. A fifth area of motivation 

concerns developing a model with a high level of variety constraint aggregation allowing 

computationally fast solutions – the modeling tractability goal is find an optimal solution 

within one minutes – which is especially important to use the model as a decision-making 

instrument for tactical MEDEVAC asset planning. Last, we develop a three-dimensional 

shortest helicopter path algorithm to more accurately compute the probability of successfully 

evacuating patients from a casualty demand location to the closest MTF site within two 

hours. In order to determine the optimal flight route and respective helicopter flight time, this 

algorithm considers the effects of terrain obstacles, known enemy locations, air traffic control 

regulations, limitations due to patients‟ pulmonary conditions, helicopter performance at high 

altitudes, and the dependence of helicopter velocity on density altitude. 

1.2.2 PURPOSE 

Therefore, this work describes a robust, multi-criteria decision analysis methodology using a 

scenario-based, stochastic optimization goal programming model that U.S. Army medical 

planners can use as a strategic and tactical MEDEVAC asset planning tool to help bolster and 

improve the current HSS system within Afghanistan to support OEF. Specifically, this model 

optimizes over a set of expected scenarios to determine the optimal emplacement of 

MEDEVAC assets (including MEDEVAC helicopter sites and the type and quantity of 

aircraft at each site) in Afghanistan based on stochastically-determined casualty locations and 

three optimization goal criterion: maximize the aggregate expected casualty demand 

coverage, minimize MEDEVAC helicopter spare capacities, and minimize the value of the 

maximal MTF evacuation site total vulnerability to enemy attack. 

1.2.3 COMPLEXITY 

This problem falls under the category of discrete facility location modeling, where demands 

arise on distinct nodes and the facilities are restricted to a finite set of candidate locations 

(Daskin 2008).  Here, this problem classifies as a covering-based model because there is a 
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coverage time (two hours) within which casualties (at specific casualty demand nodes) must 

be evacuated in order to be considered covered.  Furthermore, Daskin (2008) suggests three 

prototypical problems under the class of covering models: the set covering model, the 

maximal covering model, and the p-center model. Although some instances these problems 

can be solved in polynomial time using mixed integer programming techniques where the 

linear programming relaxation is an integer solution, each of these covering-based models is 

classified as NP-hard (Daskin 2008).  With this in mind, this MEDEVAC asset optimization 

problem also classifies as NP-hard as it falls under the class of discrete location coverage 

modeling. 

The next section presents a concise yet substantive literature review particularly concerning 

emergency service vehicle and facility location optimization problems that have been 

researched and tackled using various solution methodologies over the past few decades. 

1.3 LITERATURE REVIEW 

One of the first attempts to solve the problem concerning the location of emergency service 

facilities was considered by Toregas et al. (1971), who used linear programming solution 

techniques for a location set covering problem with equal objective costs. Berlin & Liebman 

(1974) solve an emergency ambulance location problem by systematically combining a 

location set covering model with a discrete event simulation, which simultaneously solves the 

facility location and vehicle allocation problems. Geoffrion & Graves (1974) develop a 

solution technique based on Benders decomposition to solve a multi-commodity capacitated, 

single-period distribution system problem formulated as a mixed integer linear program. 

Larson (1975) presents an approximation procedure using multiple server queuing theory to 

analyze a number of resource allocation problems in urban emergency service systems. Aly 

& White (1978) develop a probabilistic formulation of the emergency service location 

problem as an extension to the location set covering problem to account for the assumption 

that the location of an incident is a random variable occurring uniformly over a certain area.  

In addition to the solution methods proposed above, goal programming is a modeling 

technique used to analyze problems involving multiple, conflicting objectives (Ignizio 1978). 

Charnes & Storbeck (1980) apply location covering techniques within a goal programming 

framework to develop a method for the positioning of multilevel emergency health service 

systems so that each service level maximizes coverage of its own demand population and 
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there is assurance of backup coordination between levels.  Daskin (1983) presents an integer 

programming formulation for the maximum expected covering location problem, which he 

solves using a heuristic solution algorithm. Gass (1986) tackles a military personnel planning 

problem using goal programming, where he presents a process to establish goal priorities and 

objective function weights. Neebe (1988) considers the problem of locating emergency 

service facilities, where he presents a linear programming relaxation procedure to determine 

the minimal number of required facilities given that the maximum distance between the 

demand points and their nearest facility does not exceed some specified value. Pirkul & 

Schilling (1988) design an effective solution procedure using a Lagrangian relaxation of a 

model formulation for emergency service systems where facility workload is controlled and 

backup service for some or all demand points is considered. ReVelle & Hogan (1989) derive 

two new model formulations from the probabilistic location set covering problem to 

incorporate the dynamic aspect into emergency facility and vehicle location decisions. They 

propose the maximum reliability location problem and the α-reliable p-center problem. 

Batta & Mannur (1990) propose a modeling framework combining the set covering and 

maximal covering location problems to locate emergency vehicles in an environment 

requiring multiple response units. Pirkul & Schilling (1991) present an efficient solution 

combining Lagrangian relaxation and subgradient optimization procedures to solve an 

extended capacitated maximal covering location problem. Ball & Lin (1993) derive a 

reliability-based binary integer programming optimization model for emergency service 

planners to solve the strategic problem of where to locate emergency service stations and the 

tactical problem of the number of vehicles to place at each station. ReVelle & Marianov 

(1996) extend the probabilistic version of the maximal covering location problem by 

developing a more realistic model for emergency systems known as the queuing maximal 

availability location problem.  The model emplaces a limited number of emergency vehicles 

in order to maximize the calls for service using a queuing theory model for server 

availability. Gendreau et al. (1997) designs a tabu search metaheuristic to solve a double 

coverage location model for ambulance services with an embedded decision support system 

to assist real-time vehicle redeployment operations.  

Marianov & Taborga (2001) expand the maximal covering location model into the economic 

market realm, where they present a model and heuristic solution approach for the optimal 

location of competitive public health care centers. In recent years, researchers and analysts 
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have focused on developing more probabilistic approaches to logistics problems.  For 

instance, Santoso et al. (2005) present a stochastic programming approach for supply chain 

network design with a large number of scenarios for the uncertain problem parameters.  For 

their solution methodology, they integrate a sample average approximation scheme with a 

Benders decomposition algorithm. Jia et al. (2005) propose a general facility location model 

for large-scale emergencies, such as earthquakes and terrorist attacks, that can be cast as a 

generalization of the covering, p-median, and p-center models that have been developed for 

regular emergency services facility location. Alsalloum & Rand (2006) suggest a goal 

programming approach to solving the problem of identifying the optimal locations of a pre-

specified number of emergency medical service stations, which is an extension to the 

maximal covering location problem. Moreover, modeling techniques have been researched 

and proposed for military facility vulnerability analysis. For example, Brown et al. (2006) 

apply attacker-defender, bilevel and trilevel optimization models to help the military assess 

facility vulnerability when faced with an intelligent enemy, such as terrorists. Gong & Batta 

(2007) propose an ambulance allocation model for post-disaster rescue operations, where 

they initially focus on allocating the correct number of ambulances to each casualty cluster, 

and then analyze the ambulance reallocation problem to redistribute ambulances for full 

utilization. Silva & Serra (2008) tackle a problem concerning emergency services in urban 

settings where service calls involving danger to human life require higher priority compared 

to more routine situations; they formulate a covering model that considers different priority 

levels. Related to modeling for military medical planning, Fulton et al. (2009) propose a two-

stage stochastic optimization model for the relocation of deployable military hospitals, the 

reallocation of hospital beds and commensurate staff, and the emplacement of tactical 

evacuation assets during steady-state military combat operations. 

1.4 APPROACH 

The remainder of this work describes our strategic approach to optimizing the U.S. Army‟s 

aeromedical evacuation system in Afghanistan, which is organized as follows. Section 2 

explains our theoretical methods used, particularly the optimization methodologies 

incorporated into the model, the mixed integer programming formulations, and our three-

dimensional shortest helicopter path algorithm. Section 3 discusses our modeling experiment, 

specifically explaining the Afghanistan MEDEVAC asset optimization context, model data 

parameter quantification and assumptions, model implementation and solutions, and the final 
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results and sensitivity analyses useful for the decision-maker.  Concluding remarks, model 

limitations and areas for further research, and acknowledgments are presented in Section 4. 

2 THEORETICAL METHODS 

2.1 MODELING METHODOLOGIES 

The following modeling techniques are incorporated in this robust, multi-criteria, decision-

analysis methodology to tackle the Afghanistan MEDEVAC asset optimization problem. 

2.1.1 GOAL PROGRAMMING 

Goal programming is a traditional multi-criteria decision analysis technique that provides an 

analytical framework through which decision-makers can systematically explore and examine 

different optimization problem alternatives.  Moreover, the decision-maker defines goals for 

the different optimization objectives considered and evaluates the effects each of these 

criterion have on the overall optimal solution for the system (Durbach & Stewart 2003). This 

methodology is particularly useful for strategic planning when incorporated with goal priority 

weights determined by the decision-maker. In the following solution methodology, our goal 

programming model consists of three different criteria seeking to maximize the aggregate 

expected casualty demand coverage while minimizing both MEDEVAC helicopter spare 

capacities and the maximal medical treatment facility evacuation site total vulnerability. 

2.1.2 SCENARIO PLANNING 

Scenario planning methods take into account future uncertainty and randomness involved in 

strategic decision-making. These scenarios are developed in an approach that focuses on 

underlying factors causing uncertainty within the system. Specifically, this approach aims to 

identify robust alternatives over the set of probabilistic scenarios (Durbach & Stewart 2003). 

Design of Experiments (DOE) is a mathematical process used for identifying these different 

modeling alternatives, as it provides solution designers with a systematic method for 

modeling the interactive effects of various experimental design factors. Models designed 

using DOE are called 2
f
 factorial designs, where f refers to the number of factors considered 

in each scenario (West 2008).  In the following solution methodology, a 2
3
 design scenario-

approach is utilized to capture uncertainty for better decision-making; the specific scenario 

DOE factors are discussed in Section 2.2.7.  Additionally, the model provides sufficient 

statistical analyses for each solution found across the given set of scenarios. 
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2.1.3 STOCHASTIC OPTIMIZATION 

Stochastic optimization methods incorporate random elements into the model objective 

function, model constraints and/or model data parameters, which serve a similar function as 

scenario planning to aid decision-makers when optimizing in the presence of uncertainty. 

Furthermore, stochastic programming is frequently used to model both multi-stage 

optimization problems – where decisions are made periodically based on currently known 

realizations of some of the random variables – and probabilistic scenario-based problems 

(Kleywegt & Shapiro 2000). The following solution methodology describes a two-stage 

stochastic optimization goal program – where the first stage stochastically determines the 

casualty demand locations and the second stage decides where to emplace MEDEVAC 

helicopters at a subset of the feasible MTF evacuation sites based on these now known 

demand sites – that optimizes the expected value of the objective function (i.e. minimizes 

over a set of probabilistic scenarios), and many of the model data parameters are quantified 

using stochastic calculations rather than deterministic (see Section 3.2 for more details).  

2.2 MODEL DEVELOPMENT 

The following goal programming model optimizes over a set of expected scenarios generated 

from different experimental design factors, providing a robust, multi-criteria decision-

analysis mechanism to tackle the Afghanistan MEDEVAC optimization problem. The 

following sets, data parameters and decisions variables are defined to formulate the model. 

2.2.1 SETS 

W = experimental design scenarios for evaluation with index w ∈ W 

I = monthly casualty demand locations with index i ∈ I 

J = feasible MTF sites for helicopter emplacement with index j ∈ J 

K = aircraft model types with index k ∈ K  

S = number of aircraft to be co-located at MTF evacuation site j with index s ∈ S 

G = goals/criteria considered in the goal program with index g ∈ G 

T = number of Monte Carlo simulation trials, not in the formulation, with index t ∈T 
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2.2.2 DATA PARAMETERS 

aiw = the proportion of monthly demand originating at casualty site i such that the 

summation of aiw for all i equals 1 in each scenario w 

Pijkw the probability of successfully evacuating patients from casualty location i to MTF 

site j with aircraft type k in scenario w within two hours, where MEDEVAC assets are 

co-located with and dispatched from the closest MTF evacuation site 

rjksw = the maximum number of casualties that can be supported from MTF evacuation 

site j with s number of aircraft type k in scenario w 

λiw = the actual monthly casualty demand emanating from casualty location i in each 

scenario w 

ck = the number of aircraft of model type k available in OEF theatre 

vjw = the vulnerability associated with each MEDEVAC route in/out of each MTF site j in 

scenario w 

vcjw = the total vulnerability threshold level for each MTF evacuation site j in scenario w 

occurw = the expected probability that scenario w occurs, in the objective function  

prigw = the priority weight of goal g in scenario w, in the objective function 

2.2.3 DECISION VARIABLES 

Binary Variables 

Yijk = binary variable for MEDEVAC assets, equals 1 if evacuation from casualty 

location i with aircraft type k dispatched from MTF site j is equal to or greater than the 

pre-specified probability and j is the nearest emplaced MTF evacuation site that facilitates 

evacuation within two hours, or 0 otherwise 

Xjks = binary variable for positioning of aircraft, equals 1 if s number of aircraft type k are 

to be considered for positioning at MTF evacuation site j, or 0 otherwise  

Positive Variables 

dmiv1w = underachievement deviation for Goal 1 in each scenario w 

dplus2jkw = overachievement deviation for Goal 2 for each j, k, and w 

dplus3w = overachievement deviation for Goal 3 in each scenario w 

V = the value of the maximal MTF evacuation site total vulnerability over all scenarios 

Q = the value of the maximum expected sum of the weighted goal deviations over all 

scenarios 
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2.2.4 MULTI-CRITERIA OPTIMIZATION GOALS 

Optimization Goal #1: The first goal seeks to 

maximize the aggregate expected casualty demands 

covered, such that each casualty demand location i 

can be covered by no more than one in-theatre 

MEDEVAC asset of type k emplaced at MTF 

evacuation site j:  

Optimization Goal #2: The second goal seeks to minimize the spare capacities of 

MEDEVAC helicopters for each type k emplaced at each MTF site j ensuring a sufficient 

level of pre-determined reliability that an aircraft 

will be available when casualties occur, such that 

only s number of type k aircraft can be located at 

each MTF site j, each casualty demand location i 

can be covered by no more than one in-theatre 

MEDEVAC asset of type k emplaced at MTF site 

j, and the total number of helicopters of type k 

positioned cannot exceed its in-theatre capacity:  

 

Optimization Goal #3: The third goal seeks to minimize the value of the maximal MTF 

evacuation site total vulnerability, such that the total vulnerability of each MTF site j does not 

exceed its pre-decided enemy vulnerability threshold level, each casualty demand location i 

can be covered by no more than one in-theatre MEDEVAC asset of type k emplaced at MTF 

site j, and the value of maximal vulnerability V is greater than or equal to the total 

vulnerability of the MTF site j with the highest total vulnerability: 

 

 

 

}1,0{

1







ijk

j k

ijk

i j k

ijkijki

Y

iYtosubject

YPaMax

}1,0{},1,0{

1

1























 







ijkjks

s

k

j

jks

j k

ijk

s

jks

i

ijki

s

jksjks

YX

kcXs

iY

jkXtosubject

jkYXrMin 

0},1,0{

1















VY

jYvV

iY

jvcYvtosubject

VMin

ijk

i k

ijkj

j k

ijk

i k

jijkj



23 

 

2.2.5 MIXED INTEGER PROGRAMMING MODEL FORMULATIONS 

Model Formulation #1: The first model formulation combines the three optimization goals 

into a super goal program that optimizes over a set of expected scenarios: 

 

 

 

 

 

 

 

 

 

 

 

The objective function here in (1) seeks to minimize over the set of scenarios the expected 

sum of the weighted goal deviations. Constraints (2), (4) and (7) refer to the objective 

functions of each of the three original optimization goals with their respective under/over 

achievement deviations from their desired goal target values. Constraints (3) suggest that 

each casualty demand location can be covered by no more than one in-theatre MEDEVAC 

asset of a certain type emplaced at a MTF evacuation site. Constraints (5) mean that only s 

number of an aircraft can be located at each MTF site, and constraints (6) dictate that the total 

number of helicopters of each type positioned cannot exceed its in-theatre capacity. 

Furthermore, constraints (8) ensure that the total vulnerability of each MTF site does not 

exceed the pre-decided enemy vulnerability threshold level, and constraints (9) define the 

value of maximal vulnerability V as greater than or equal to the total vulnerability of the 

MTF site with the highest total vulnerability over all scenarios. Last, constraints (10) and (11) 

refer to the binary and positive decision variables, respectively.  
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Model Formulation #2: The second model formulation also combines the three optimization 

goal into a super goal program but with a different objective than the previous formulation: 

 

 

 

 

 

 

 

 

 

 

 

The objective function above in (12) seeks to minimize Q, where constraints (13) define the 

value of Q as greater than or equal to the maximum expected sum of the weighted goal 

deviations over all scenarios – a min-max objective function.  Constraints (14), (16) and (19) 

refer to the objective functions of each of the three original optimization goals with their 

respective under/over achievement deviations from their desired goal target values. 

Constraints (15) suggest that each casualty demand location can be covered by no more than 

one in-theatre MEDEVAC asset of a certain type emplaced at a MTF evacuation site. 

Constraints (17) mean that only s number of an aircraft can be located at each MTF site, and 

constraints (18) dictate that the total number of helicopters of each type positioned cannot 

exceed its in-theatre capacity. Also, constraints (20) ensure that the total vulnerability of each 

MTF site does not exceed the pre-decided enemy vulnerability threshold level, and 

constraints (21) define the value of maximal vulnerability V as greater than or equal to the 

total vulnerability of the MTF site with the highest total vulnerability over all scenarios. Last, 

constraints (22) and (23) refer to the binary and positive decision variables, respectively.  
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2.2.6 ADDITIONAL DATA PARAMETERS 

dist_puijkw = Euclidean distance between casualty site i and MTF evacuation site j to 

pickup (and drop-off) patients with aircraft k in scenario w 

magiw = radius around AO „Hotbed‟ for which casualties are likely to occur in scenario w 

ok = fleet operational readiness for aircraft model k 

litk = number of patient litters available in aircraft type k 

cas_dw = parameter used to calculate total demand of all casualty locations in scenario w 

evac_timeijkw = Monte Carlo simulation average MEDEVAC time for casualties at i 

to/from j in scenario w 

en_attackj = enemy capability lethality factor per MTF evacuation site j 

velijkwt = helicopter transport velocity in trial t between MTF evacuation site j and 

casualty location i with aircraft k in scenario  w 

lethiw = lethality multiplier used to model enemy capability uncertainty in scenario w 

trialijkwt = MEDEVAC time per Monte Carlo simulation trial t  in scenario w 

time_injijkwt = time in trial t from injury at the casualty demand location to notification of 

supporting MEDEVAC helicopter in scenario w 

time_wupijkwt = time in trial t from notification to wheels up in scenario w 

time_pupijkwt = flight time in trial t from closest MTF to pickup casualty in scenario w 

time_ldijkwt = patient load time in trial t at pickup location in scenario w 

time_dropijkwt = flight time in trial t from casualty site to closest MTF in scenario w 

time_offldijkwt = patient off-load time at the MTF in trial t and scenario w 

2.2.7 MODELING SCENARIOS 

This work uses the DOE mechanism for determining the optimization modeling scenarios.  

Specifically, the solution methodology has a 2
3
 design, which means three different design 

factors are explored to generate eight different modeling scenarios.  These scenario design 

factors consist of the goal priority weights (pri1w, pri2w & pri3w), the maximum AO „hotbed‟ 

casualty radius (magiw), and the total vulnerability threshold level for each MTF evacuation 

site (vcjw).  Additionally, although not one of the specific design factors, each scenario has a 

respective expected probability of occurrence (occurw) set by the decision-maker. 
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2.3 THREE-DIMENSIONAL SHORTEST HELO-PATH ALGORITHM 

The algorithm presented in this section computes a nearly-optimal (i.e. almost fastest) 

helicopter flight route with respective flight time between an origin (eg. MTF evacuation site) 

and a destination (eg. casualty demand location), which considers the effects of: 

 (1) Terrain obstacles within the operating environment 

(2) Known enemy hotspots 

(3) Air traffic control regulations 

(4) Limitations due to patients‟ pulmonary conditions 

(5) Helicopter performance at high altitudes  

(6) Dependency of the helicopter velocity on density altitude 

 

2.3.1 ALGORITHM CONDITIONS  

Before diving into the specifics of our algorithm, it is important to describe some of the 

conditions affecting a real-world, nearly-optimal helicopter path during combat operations. 

Condition (1) is important when determining a helicopter flight route in the three-dimensional 

space where helicopters must fly over, around or between terrain obstacles such as 

mountains, which is particularly important in an operating environment such as Afghanistan. 

Condition (2) is necessary so that helicopters avoid probable enemy attacks during the flight 

route, thereby safely transporting soldiers and evacuating those WIA casualties requiring 

medical assistance at the closest MTF site.  Condition (3) is essential because there are some 

flight routes where helicopters are not allowed to fly, such as flying over field artillery and 

mortar units or other “No Fly” zones.  Additionally, there are some flight routes that air 

traffic controllers‟ deem un-flyable due to frequently poor weather in terms of visibility and 

cloud ceiling conditions. Condition (4) is vital such that WIA soldiers suffering from cardiac 

arrests or other pulmonary injuries cannot fly over 10,000 feet, where patients do not receive 

oxygen supplements at the higher altitudes. These first four conditions are utilized during the 

preprocessing phase of our algorithm to determine if the three-dimensional flight route is 

feasible, where the final two conditions greatly impact the actual helicopter flight time. 

Condition (5) suggests that the helicopter performance at high altitudes– assuming that the 

helicopter engine and all components are operating satisfactorily – is heavily influenced by 

the density altitude, gross weight, and wind velocity during takeoff, hovering and landing. 

Gross weight is the only factor that the pilot of the helicopter can control (i.e. changing fuel 

amounts, number of passengers, or baggage loads). If a helicopter must fly over a mountain 
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Figure 2: Density Altitude Chart 

against the violent wind downdrafts (although this creates an easy target for the enemy with a 

silhouette of the helicopter in the sky), it is advisable for a pilot to allow extra distance to 

safely clear the mountainous terrain.  Additionally, there are distinct helicopter airspeed 

limitations such that as the altitude 

increases, the never-exceed airspeed (Vne) 

for most helicopters decreases. For 

example, at sea level Vne is 86 miles per 

hour (MPH); at 6,000 feet and 2500 rotor 

blade rotations per minute (RPM), it is 65 

MPH; and at 6,000 feet and 2700-2900 

RPM, it is 78 MPH.  Above 2,000 feet, Vne 

decreases 3 MPH per 1,000 feet, and above 

6,000 feet, Vne decreases 5 MPH per 1,000 

feet. Figure 1 (left) depicts these airspeed 

limitations due to changes in altitude.  

Therefore, as the density altitude, gross weight and/or 

wind velocity increases, the helicopter performance 

diminishes as well.  

Lastly, condition (6) is also important for the actual 

flight time calculation where helicopter velocity depends 

on density altitude.  Particularly, as the density altitude 

increases during flight then the greater the velocity 

decrement (i.e. decrease in the rate of climb) for any 

helicopter. The four factors affecting density altitude 

within the operating environment include the elevation, 

atmospheric pressure, temperature, and moisture content 

of the air. As elevation increases, the atmospheric 

pressure decreases, the air becomes less dense, which 

increases the density altitude.  Figure 2 (right) depicts a 

chart used to determine density altitude based on the 

temperature and the pressure altitude, where the pressure 

altitude is read directly from the altimeter in the cockpit when adjusted to a certain 

Figure 1: Helicopter Airspeed Limitations 
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Figure 3: Rate of Climb and Best Rate 

of Climb Speed Chart 

atmospheric pressure (such as 29.92 inches of mercury).  Great changes in temperature cause 

major changes in air density, even when elevation and pressure remain constant. Therefore, 

as temperature increases, the air becomes less 

dense and the density altitude increases.  

Although the density altitude chart in Figure 2 

does not consider the moisture content of the air, 

increases in air moisture leads to less dense air 

and, thus, a greater density altitude, when 

temperature and pressure are constant. 

Moreover, as the temperature increases, the air 

can hold a greater amount of moisture.  

Therefore, the actual density altitude could be 

much higher then what is computed in Figure 2 

if the air contains high moisture content. After 

computing the density altitude for the 

temperature and pressure altitude conditions 

using the density altitude chart, pilots use Figure 3 

(left) to compute the helicopter rate of climb and 

best rate of climb speed. This velocity decrement as density altitude increases is essential for 

calculating the helicopter flight time in our algorithm (see Basic Helicopter Handbook). 

2.3.2 ALGORITHM DESCRIPTION 

We use an approximate dynamic programming algorithm to solve the three-dimensional 

fastest helicopter-path problem. Here, 'approximate' regards the fact that the originally 

continuous problem is discretized. Due to this discretization, the algorithm does not return an 

optimal solution to the continuous problem but a solution of the flight time at most α times 

the continuous optimum. The discretization is made in a straight forward way: instead of the 

continuous operating scene in three-dimensional space, we only consider integer points in 

some parallelepiped that approximates the operating scene. More specifically, if the operating 

scene is defined in   
  with                  , we take into consideration 

only the integer points in this parallelepiped     
 ⋂            

             

        . Further, we assume that the helicopter flies only piece-wise linearly from 

point to point in S. Deviation from the optimal continuous curve defines the multiplicative 
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error of the discrete solution. On the other hand, any continuous partially-differentiable curve 

in three-dimensional space can be approximated by a piece-wise linear curve with arbitrary 

precision.  Therefore, making the discretization scale dense enough, we can achieve α     

  for any given      

Given two points             and                , the helicopter flight time 

between   and    is defined as follows: 

(1.1)         
 (    )

|    |
|∫

   

      

  

 
|         |

            (      )

        
|, 

where         is the Euclidean distance (nautical-miles) between   and   ,    is the flight 

speed of the helicopter at sea level (nautical-miles per hour), and c is the helicopter speed 

decrement of the density altitude (from Figure 3, where the necessary density altitude 

conversions are made depending on elevation, atmospheric pressure and temperature factors). 

In the preprocessing phase of the algorithm, for any two points   and    from S, we compute 

        using Equation 1.1.  Moreover, for any two points   and    we test whether the 

straight-line flight route from   to    satisfies conditions (1) through (4).  If the feasibility 

conditions are not satisfied, we re-define           . For completeness, we define 

         for any    .  Now, quadruple (S, F, s, d), where                     

     , specifies the input of the discrete fastest helicopter-path problem.  Here, vertex s 

denotes the origin and vertex d denotes the destination of the helicopter flight route. 

Let K be a clique on the vertex set S. Let the length              be determined by 

       .  Therefore, it is obvious that the straightforward Dijkstra‟s dynamic programming 

algorithm for the shortest sd-path in K solves the discrete fastest helicopter-path problem.  

2.3.3 ALGORITHM PSEUDO-CODE  

Again, Dijkstra‟s dynamic programming algorithm provides an efficient solution to the 

discrete fastest helicopter-path problem, which repeatedly evolves the front of vertices that 

are closest (in Euclidean distance) to the origin s until the destination vertex d is reached.  

Rippel et al. (2004) describes Dijkstra‟s algorithm as follows: the graph is denoted by G = (V, 

E); the cost function over the edges E is represented by C; s is the origin and D is the set of 

destination vertices. For each vertex v   V, the algorithm stores an estimate g(v) of the current 

cost of the shortest path from the origin. Besides the origin (which is initialized to 0), g(v) is 



30 

 

initialized to +∞.  Additionally, his algorithm maintains a set S ⊂ V of vertices whose final 

shortest-path values have already been computed, which is initialized with the origin vertex, 

{s}, and g(s) = 0. This algorithm then recursively selects (or retires) the vertex v in the 

complement of S that is closest (i.e. shortest Euclidean distance) to the origin.  Furthermore, 

this repetitive process is essentially executed by considering all vertices u that are one-edge 

neighbors to some vertex v is S, and selecting the vertex v with the smaller cost estimate g(v) 

+ C(u, v). A priority queue within the algorithm – that maintains the best cost estimates so far 

for all neighbors of S – manages this selection.  Therefore, for any vertex u retired to S the 

algorithm also saves its predecessor vertex v, so that the optimal shortest path may be traced 

back. The pseudo-code implementation for Dijkstra‟s algorithm is shown in Figure 4 (below): 

 
Figure 4: Dijkstra’s Dynamic Programming Algorithm 

Our three-dimensional shortest helicopter-path algorithm efficiently solves the discrete fastest 

helicopter-path problem using Dijkstra‟s algorithm for implementation. Dijkstra‟s dynamic 

programming algorithm has a time complexity of O(n log n), where n represents the number 

of vertices in V, the number of neighbors for each vertex is bounded, and the priority queue is 

implemented efficiently using a data structure such as the binary heap (Rippel et al. 2004). 

For related algorithms see Dijkstra (1959); Tsitsiklis (1995); Carlyle et al. (2007), Storer and 

Reif  (1994), and Agarwal et al. (1997). 
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3 EXPERIMENT 

3.1 PROBLEM CONTEXT 

The following real-world experiment uses our proposed solution methodology to tackle the 

combinatorial problem defined by CSTC-A and CENTCOM, which specifically concerns 

optimizing the U.S. Army‟s aeromedical evacuation system in Afghanistan. 

3.1.1 AFGHANISTAN MEDEVAC SYSTEM OPTIMIZATION 

Military commanders have faced significant obstacles since the inception of OEF to 

holistically integrate MEDEVAC assets within Afghanistan to provide a fully-functional HSS 

system that ensures wounded-in-action (WIA) soldiers are efficiently air evacuated to receive 

effective medical care at field-sited MTF sites.  Figure 5 below depicts Afghanistan with its 

respective provinces and International Security Assistance Force (ISAF) operating regions:  

Figure 5: ISAF Operating Regions and Afghan Provinces 
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As you can see from Figure 5, ISAF military commanders have broken Afghanistan into five 

distinct regions (RC-WEST, RC-NORTH, RC-EAST, RC-CAPITAL & RC-SOUTH) to 

illustrate the regions in which both U.S. and NATO combat forces are currently operating for 

OEF. Additionally, Figure 5 exposes the setting for this MEDEVAC combinatorial 

optimization problem, specifically the Afghan provinces considered in the experiment. 

3.1.2 MEDICAL TREATMENT FACILITY EVACUATION SITES 

In order to improve patient survivability in-theatre, combat soldiers who are WIA must be 

efficiently evacuated by either air or ground medical evacuation assets where highly-trained 

medics provide in-route medical care before arrival at the closest MTF.  Here, the model 

provides a strategic and tactical solution for the optimal emplacement of aeromedical 

evacuation assets at medical treatment facility evacuation sites, where all MTFs serve as 

feasible MEDEVAC helicopter positioning sites.  

Figure 6: Feasible Medical Treatment Facility Evacuation Sites in Afghanistan 
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In Figure 6 above, twenty-one MTF sites serve as feasible MEDEVAC helicopter 

emplacement locations; with the assumption that MEDEVAC assets are co-located at the 

MTF sites (i.e. MEDEVAC helicopters evacuate WIA casualties to and from the same closest 

MTF evacuation location). Moreover, these MTF evacuation sites are restricted to pre-

determined locations in the OEF theatre due to sustainability requirements such as logistics, 

maintenance and security. These feasible MTF evacuation sites are plotted by red crosses on 

a 540x864 nautical-mile grid coordinate system (see Appendix A) to account for MEDEVAC 

flight times where helicopter velocities are calculated in knots (nautical-miles per hour).  

Although these twenty-one MTF sites are pre-assigned due to sustainment capabilities, some 

of them are more susceptible to uncertain enemy insurgent attack than others.  Therefore, the 

model captures the additional importance of optimizing MTF site total vulnerability, ensuring 

that each evacuation site does not exceed some pre-determined total vulnerability threshold 

level assigned by the decision-maker.  Additionally, the quantity of each MEDEVAC 

helicopter type in-theatre is fixed due to the long-term nature of steady-state combat 

operations.  Despite this, the decision-maker can utilize this model tactically to re-distribute 

and re-emplace the aeromedical evacuation assets available on a monthly basis among the 

feasible MTF evacuation sites to continually optimize the MEDEVAC system based on the 

three goal program optimization criteria.   

3.1.3 U.S. ARMY AREAS OF OPERATION HOTBEDS 

Based upon the ISAF regions from Figure 5, the U.S. Army currently has main operating 

units in both RC-EAST and RC-SOUTH zones.  Particularly, the U.S. Army 3
rd

 Brigade 1
st
 

Infantry Division and 4
th

 Brigade 101
st
 Airborne Division are currently situated in RC-EAST 

– Afghan provinces of Nangarhar and Khost, respectively – and the U.S. Army Company D 

1
st
/4

th
 Regiment is located in RC-SOUTH – the Afghan province of Zabul.  Moreover, U.S. 

President Barack Obama recently announced that new U.S. Army Brigade Combat Teams 

(BCT) will be deploying to Afghanistan in support of OEF.  Due to the influx of insurgent 

and Taliban activity in the southern part of Afghanistan bordering Pakistan, we assume in this 

experiment that the newly deployed BCTs will be positioned in the Afghan provinces of 

Farah (RC-WEST) and Kandahar (RC-SOUTH). Figure 7 below illustrates the five locations 

of these U.S. Army operating units, which will serve as Areas of Operation (AO) „Hotbeds‟. 

These AO locations are also plotted on the 540x864 nautical-mile coordinate system, giving 

the following grid points ({108, 189}, {378, 162}, {270, 162}, {567, 324}, {540, 243}): 
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Figure 7: U.S Army Operating Units in Afghanistan 

The AO hotbed locations are used later in the experiment to stochastically generate casualty 

demand sites i and the actual monthly casualty demand (λiw) within the Afghanistan 

battlefield, which is the first stage of our two-stage stochastic optimization goal programming 

model (see Section 3.2.1).  The second stage, therefore, is to optimally emplace the 

helicopters at a subset of the MTF evacuation sites. 

3.2 DATA PARAMETER QUANTIFICATION 

Inherent in the stochastic optimization goal programming model is the necessity to quantify 

the geographically variant casualty demand and respective demand locations in Afghanistan, 

the probability of successfully evacuating WIA casualties within two hours from each 

demand location, the maximum supportable MEDEVAC demand from helicopters emplaced 

at MTF evacuation sites, and the vulnerability level of each MTF evacuation site within the 

different Afghan provinces associated with MEDEVAC routes in and out of each MTF. 
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3.2.1 CASUALTY GENERATION 

Due to uncertainty involved with Taliban and insurgent activity within Afghanistan, future 

casualty demand numbers and locations must not be determined from purely historical 

casualty patterns. Instead, U.S. Army medical planners must combine both empirical and 

stochastic data to best forecast future geographically variant casualty demand. According to 

OEF casualty statistics posted by the U.S. Department of Defense (DoD) in Figure 8, there 

have been 2,806 WIA soldiers as of May 4, 2009, since the inception of OEF on October 7, 

2001, which averages roughly thirty WIA casualties per month: 

 
Figure 8: OEF U.S. Casualty Status 

For experiment purposes, we assume that all WIA casualties from Figure 8 were air 

evacuated to a mobile hospital, where roughly one patient was air evacuated per injury 

location. Therefore, the model stochastically forecasts monthly geographically variant 

casualty demand with thirty different casualty demand locations, which proves useful for 

tactical MEDEVAC asset planning each month during steady-state combat operations.  

Moreover, this experiment assumes that U.S. Army medical planners have selected the five 

U.S. Army AO hotbeds as prime locations or „casualty centers‟ for likely enemy attacks due 

to the ongoing combat operations and, therefore, casualty demand can be estimated near the 

Afghan provinces of Nangarhar, Khost, Zabul, Farah, and Kandahar.  Furthermore, a 

frequency distribution then assigns the percent of casualties occurring within each pre-

determined AO hotbed location, which is depicted in Table 1 below: 

Locations of Casualty Centers  

Grid Percent of Casualties 

{108, 189} 0.073 CDF 

{378, 162} 0.180 0.252 

{270, 162} 0.180 0.432 

{567, 324} 0.284 0.716 

{540, 243} 0.284 1.000 
Table 1: Pre-determined Locations of Casualty Centers 
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In Table 1, each AO hotbed grid coordinate is located in one of the Afghan operating regions 

classified by ISAF. In fact, two of the AOs are co-located in RC-SOUTH and another two 

AOs are co-located in RC-EAST.  Moreover, this casualty frequency distribution using data 

from Campbell & Shapiro (2008) was determined by dividing the number of Taliban 

incidents (see Appendix B) in the AO hotbed region by the total number of Taliban incidents 

that occurred in RC-EAST, RC-WEST and RC-SOUTH.  For the two sets of four AOs co-

located in the same regions, each casualty center was assigned half of the overall percentage 

of casualties within its respective region.  The distribution in Table 1 provided the baseline 

for this experiment, even though an actual casualty frequency distribution would be 

determined more precisely by U.S. Army medical planners. Due to the nature of the ongoing 

U.S. Army combat operations in the OEF theatre, however, the actual empirical distributions 

are inaccessible for security purposes.   

Despite this, a stochastic mechanism exists for determining casualty demand sites based on 

these AO hotbed locations and applying uniform randomness to the identified casualty 

centers.  The first step is to assign a random casualty radius around each AO hotbed location.  

From the 2008 OEF MEDEVAC After Action Review (AAR), the coverage radius for each 

MEDEVAC aircraft was set at seventy-four nautical-miles for planning purposes.  Therefore, 

this experiment assumes a random uniform casualty generation radius around each AO 

hotbed location, where magiw = uniform(-d, +d) and d is one of the DOE scenario factors set 

at values of fifty or 100 nautical miles.  The second step is to generate random uniform angles 

[ang = uniform(0, 2π)] from the AO hotbed location in the direction in which these casualties 

are generated.  Based on a uniform random number (0, 1) and the casualty cumulative 

distribution value for the AO casualty center from Table 1, the thirty casualty demand 

locations i are stochastically determined.  Below is an example, but the complete pseudo-

code of the method is found in Appendix C:  

i (xcoord) = AO site (xcoord) + magiw*cos(ang)  

i (ycoord) = AO site (ycoord) + magiw*sin(ang) 

 

Based on this stochastic method for casualty location generation, Figure 9 below illustrates 

the total number of casualties generated over all eight modeling scenarios.  Hence, Figure 9 

contains a total of 240 casualty demand locations represented by blue triangles, which clearly 

surround the five AO hotbed locations and are denser in the RC-EAST region: 
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Figure 9: Stochastically Generated Casualty Demand Locations 

In addition to stochastic generation of the casualty demand locations, another stochastic 

element engenders the actual monthly casualty demand originating at each of these locations. 

Based on Operation Iraqi Freedom MEDEVAC flight logs from the Army Medical 

Evacuation Proponency Directorate and then adjusted to the OEF casualty situation with 

thirty WIA soldiers per month, Table 2 provides an approximate probability mass function 

for determining the number of casualties at a given casualty demand location: 

Casualties at Same Location 

Note: Based on 31 WIA/month 

# Patients P(X=x) CDF 

1 0.874   

2 0.086 0.96 

3 0.03 0.99 

4 0.01 1 
Table 2: Number of Casualties at the Same Casualty Demand Location 
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Next, we model uncertainty regarding enemy capability in the AO hotbed area by applying a 

lethality factor to the number of casualties generated at each location. Based on 2008 data 

from Campbell & Shapiro (2008) for Taliban incidents (see Appendix B), maximum and 

minimum lethality factors were determined by the following equation: 1+ (Number of 

Taliban incidents in the Afghan province divided by the total number of Taliban incidents in 

all Afghan provinces), giving a minimum value of 1.00 and a maximum value of 1.154. This 

lethality factor is applied as a uniform random distribution from the minimum to the 

maximum value [lethiw = uniform(1.0, 1.154)]. The application of this lethality factor serves 

to evaluate the lethal sensitivity of the casualty location and the uncertain enemy capabilities. 

To assign distributions for actual monthly demand at each casualty location (λiw), we use a 

uniform random number (0, 1) and the probability mass function from Table 2 for casualties 

at the same location and apply a lethality factor to the casualties generated at each location. 

For instance, for every casualty location i and scenario w, λiw= round(# Patients Evacuated at 

Same Location * lethiw) and cas_dw = sum over all λiw for each scenario w.  Also, to assign 

the proportion of monthly demand originating in each casualty demand location such that the 

summation of aiw for all i equals 1 for each scenario w, we assign aiw = λiw /cas_dw.  Please 

refer to Appendix D for the complete pseudo-code associated with this method for casualty 

demand generation and Appendix E for a table depicting the actual stochastically determined 

λiw values. For further information regarding stochastic casualty generation, please refer to 

Fulton et al (2009). Now that casualty demand locations and actual demand numbers have 

been generated, this completes the first-stage of the stochastic goal programming model.  

3.2.2 MEDEVAC TIME MONTE CARLO SIMULATION  

Another essential aspect of this experiment involves quantification of the probability (Pijkw) 

of successfully evacuating casualties from each of the thirty newly established casualty 

demand locations, determined from the first-stage of stochastic optimization model, within 

two hours; this is calculated for each scenario. Moreover, MEDEVAC helicopters are 

dispatched from the closest MTF evacuation site where aircraft are positioned and available 

to retrieve the WIA soldiers and transports them to the closest MTF.  In general terms, this 

data parameter measures the probability of success for each Yijk „arcbird‟ (where the total 

number of arcbirds represent the  product of the thirty casualty demand locations, the twenty-

one potential MTF evacuation sites, and the three aircraft models for emplacement). In order 

to quantify this data parameter for the second-stage of the stochastic goal program, the model 
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conducts a Monte Carlo simulation of 100 trials per arcbird (ensuring minimal computer 

memory usage and computational running time), where each trial sampling calculates the 

total MEDEVAC time per trial and scenario (trialijkwt). This data parameter equals the sum of 

six different MEDEVAC times: 

1. The time in each trial from injury at the casualty demand location to notification of a 

supporting MEDEVAC helicopter in each scenario (time_injijkwt). Based on CAA‟s 

analysts who queried in-theatre MEDEVAC pilots, this variable is stochastically 

calculated using their subject matter expertise via a triangular distribution in the 

simulation with a minimum of five minutes, a maximum of fifteen minutes, and a 

most likely value of ten minutes (the model computes in hours rather than minutes). 

 

2. The time in each trial from notification to MEDEVAC helicopter wheels up in each 

scenario (time_wupijkwt). Based on the 2008 MEDEVAC AAR, in-theatre subject-

matter experts estimated a mean time of twenty minutes.  From personal MEDEVAC 

experience, a standard deviation of five minutes deems appropriate. Therefore, this 

variable is computed using a normal distribution using the estimated mean and 

estimated standard deviation (the model computes in hours rather than minutes). 

 

3. The flight time in each trial to pickup casualties with a helicopter dispatched from the 

closest MTF evacuation site in each scenario (time_pupijkwt).  This variable was 

stochastically calculated from dividing the Euclidean distance between the casualty 

demand location and the closest MTF evacuation sites (dist_puijkw) by a random 

uniform distribution of MEDEVAC helicopter speeds from 120 to 193 nautical-miles 

per hour (velijkwt). Note that this range of helicopter speeds was based on the 

assumption that aircraft type K1 is a HH60 Pavehawk, aircraft type K2 is a UH60A-L 

Blackhawk, and aircraft type K3 is a UH60Q MEDEVAC with normal operating 

speeds between 120 of 193 knots.  Additionally, this MEDEVAC time can be 

replaced by the value computed from our three-dimensional shortest helicopter path 

algorithm (discussed in Section 2.3).  

 

4. The patient load time in each trial at the casualty pickup location in each scenario 

(time_ldijkwt). Similar to the time in each trial from injury to notification of the 

supporting MEDEVAC helicopter in each scenario, in-theatre MEDEVAC pilots 

provided stochastic data to model this variable in the simulation using a triangular 

distribution with a minimum of five minutes, a maximum of fifteen minutes, and a 

most likely value of ten minutes (the model computes in hours rather than minutes). 

 

5. The flight time in each trial from the casualty location to drop-off patients at the 

closest MTF evacuation site in each scenario (time_dropijkwt). Similar to the flight 

time in each trial to pickup casualties with a helicopter dispatched from the closest 

MTF evacuation site in each scenario, this variable was stochastically calculated by 
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the same means; divide the Euclidean distance between the casualty demand location 

and the closest MTF evacuation site (dist_puijkw) by a random uniform distribution of 

MEDEVAC helicopter speeds (velijkwt). Note that in this experiment MEDEVAC 

helicopters only conduct evacuation missions to and from the same MTF evacuation 

site, which permits use of the same previously-determined distance calculation. 

Again, this MEDEVAC time can be replaced by the value computed from our three-

dimensional shortest helicopter path algorithm (discussed in Section 2.3). 

 

6. The patient off-load time at the MTF evacuation site in each trial and each scenario 

(time_offldijkwt). Based on the 2008 MEDEVAC AAR, in-theatre subject-matter 

experts assumed a mean off-load time of five minutes. From personal MEDEVAC 

experience, a standard deviation of two minutes deems appropriate. Therefore, this 

variable is computed using a normal distribution using the estimated mean and 

estimated standard deviation (the model computes in hours rather than minutes). 

Again, each trial of the Monte Carlo simulation sums these six essential MEDEVAC times 

and keeps a count of the number per Yijk arcbird that meets the two-hour time threshold. 

From this, the probability of successfully evacuating patients within two hours for all i, j and 

k combinations (Pijkw) is calculated by taking the number of trials meeting the threshold 

divided by the total number of simulation trials; this is executed for each scenario. For the 

Monte Carlo simulation results, please refer to Appendix F for the maximum probability of 

success and Appendix G for the average probability of success (where the Pijkw equaling 0 are 

excluded) for each of the casualty demand locations. 

3.2.3 MAXIMUM SUPPORTABLE MEDEVAC DEMAND 

The second-stage of the stochastic optimization goal programming model requires the actual 

quantity of each helicopter model available in-theatre for emplacement at MTF evacuation 

sites (ck).  Table 3 below depicts the helicopter types and quantities available to support OEF 

MEDEVAC operations, which are used in this experiment: 

Type/Number of Aircraft Available in OEF 

Helicopter Model # Available 

K1: HH60 Pavehawk 2 

K2: UH60A-L Blackhawk 3 

K3: UH60Q MEDEVAC 12 
Table 3: Type/Number of Aircraft Available in OEF 

Another data parameter essential for the second-stage of the stochastic optimization goal 

programming model concerns the maximum supportable MEDEVAC demand from each type 
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and quantity of MEDEVAC helicopters emplaced at the potential MTF evacuation sites 

(rjksw). Before diving into the calculation of this variable, the experiment makes a few 

assumptions about the number of litters available in each aircraft type (litk), the probability 

that at least one aircraft is available at the closest MTF evacuation site (p_comp), the 

operational fleet readiness of each aircraft type (ok), and the actual number of each aircraft 

type that the model decides to emplace at the MTF evacuation sites (s). Table 4 below depicts 

the number of litters available in each aircraft type (K1, K2 & K3) within the OEF theatre.  

Number of Patient Litters Available 

Helicopter Model # of Litters Available 

K1: HH60 Pavehawk 4 litters 

K2: UH60A-L Blackhawk 4 litters 

K3: UH60Q MEDEVAC 6 litters 
Table 4: Number of Patient Litters Available for each Helicopter type 

Additionally, this experiment assumes the probability of at least one available aircraft equals 

a pre-determined probability of 95%, which we later examine in the sensitivity analysis, and 

the operational fleet readiness for all aircraft types equals 67.7%. From these data parameter 

values, the model computes the maximum number of casualties that can be supported via 

aeromedical evacuation by taking the product of the number of patient litters available 

depending on aircraft type, the probability that at least one aircraft is available at the MTF 

evacuation site, the operational fleet readiness level, and the actual number of aircraft models 

positioned {2, 3 or 4}, for every combination of MTF evacuation sites, helicopter types, 

number of aircraft emplaced, and model scenarios. 

The next section discusses the quantification of MTF site vulnerability, capturing the third 

optimization goal necessary for the second-stage of this stochastic goal programming model. 

3.2.4 MTF SITE VULNERABILITY 

As previously mentioned, the third criterion of the multi-criteria stochastic optimization 

model presented here is to minimize the value of the maximal MTF evacuation site total 

vulnerability. As a proxy, we assume in this model that the greater the total number of 

MEDEVAC helicopter dispatches from each MTF evacuation site, then the greater is its 

respective total vulnerability to enemy attack. Therefore, vulnerability calculations are 

subject to the amount of enemy activity (i.e. Taliban incidents) within each Afghan province 

affecting the MEDEVAC route in and out of each MTF evacuation site. 
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 The first step was to develop an enemy capability lethality factor for each potential MTF 

evacuation site (en_attackj), which is based on the 2008 data for Taliban and other enemy  

incidents (see Appendix B). 

From this data, we determined an 

enemy capability lethality factor for 

each Afghan province by using the 

following equation: 1+ (Number of 

Taliban incidents in the Afghan 

province divided by the total number 

of Taliban incidents in Afghanistan). 

Each MTF evacuation site is located 

in an Afghan province (where some 

share the same province) where 

MEDEVAC assets are dispatched 

from the MTF evacuation site to 

conduct missions. Table 5 (left) shows 

the lethality factor assigned to each 

MTF evacuation site, which is 

equivalent to the enemy capability 

lethality factor for its respective 

Afghan province in which it is located 

and where its operations are 

conducted. The second step involved the computation of the actual vulnerability value 

associated with each MEDEVAC route in and out of each MTF evacuation site (vjw). This 

data was stochastically-determined for each potential MTF helicopter emplacement site from 

the product of the enemy capability lethality factor per MTF evacuation site and a random 

uniform probability (0, 1) accounting for the uncertainty of enemy attack within that Afghan 

province; this was repeated for all modeling scenarios. Additionally, U.S. Army medical 

planners must determine their desired total vulnerability threshold level for each potential 

MTF helicopter emplacement site (vcjw), which is used for optimization purposes required in 

the model. Our solution methodology utilizes this total vulnerability threshold level as one of 

the scenario DOE factors, which is subject to the desired input of the decision-maker.  

Degree of Enemy Capability 

Note: Taliban Incidents in Province of a MTF 

Province MTF Lethality Factor 

NIMRUZ E1 1.014 

HELMAND E2 1.090 

FARAH E3 1.025 

HELMAND E4 1.000 

KANDAHAR E5 1.154 

HERAT E6 1.017 

HERAT E7 1.017 

BADGHIS E8 1.012 

BADGHIS E9 1.012 

FARAH E10 1.025 

URUZGAN E11 1.025 

ZABUL E12 1.044 

PAKTYA E13 1.047 

PAKTYA E14 1.047 

PANJSHER E15 1.000 

GHAZNI E16 1.062 

GHOR E17 1.005 

GHOR E18 1.005 

FARYAB E19 1.009 

JAWZJAN E20 1.004 

FARYAB E21 1.009 

Table 5: Enemy Capability Lethality Factors 



43 

 

This completes the data parameter quantification and assumptions associated with the 

stochastic optimization goal programming model presented here. 

3.3 MODEL IMPLEMENTATION AND SOLUTIONS 

Now that the theoretical methods have been established and the data parameters are 

quantified, our robust, scenario-based, stochastic optimization goal programming model is 

ready for implementation.  

3.3.1 MODEL IMPLEMENTATION FRAMEWORK 

The General Algebraic Modeling System (GAMS), Microsoft Excel
©

 and Microsoft Visual 

Basic
©

 platforms provided the model implementation framework for our robust, multi-criteria 

decision analysis methodology, particularly for the stochastic casualty generation, Monte 

Carlo simulation, optimization model solver, statistics generation and reports, and multi-use 

decision analysis tool. GAMS is an appropriate framework to use when solving problems 

with multi-dimensional variables, constraints and data parameters. Additionally, the various 

stochastic calculations utilized the built-in GAMS seed assignment and random number 

generator, probability functions, and other programming controls necessary for our solution 

methodology. Lastly, GAMS leveraged the CPLEX mixed integer programming solver to 

provide the model solutions with a given set of DOE scenarios (see Appendix H for the 

GAMS programming code). 

3.3.2 SCENARIO SIMULATION EXECUTION 

Based on the given set of DOE scenarios, our stochastic optimization goal programming 

model emplaces the minimum number of helicopters at each MTF evacuation site necessary 

to maximize the aggregate coverage of the theatre-wide MEDEVAC casualty demand and the 

probability of meeting that casualty demand, while minimizing the value of the maximal 

MTF evacuation site total vulnerability to enemy attack.  Our solution methodology uses a 2
3
 

factor design for the generation of eight different scenarios to better equip U.S. Army medical 

planners with a decision analysis tool useful for future strategic and tactical MEDEVAC asset 

planning. Moreover, the decision-maker has full access to adjust each of these scenario DOE 

factors, as discussed in Section 2.2.7, to best use the model as an instrument for decision 

analysis. Also, each design scenario has a respective probability of occurrence assigned by 

the decision-maker, which is part of the optimization model objective function. Table 6 

(below) summarizes each of the design scenarios executed in this model simulation. 
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In this simulation experiment, we made smart estimates of the goal priority weights (P1, P2 

& P3), casualty radii (casrad), total vulnerability threshold levels (vuln), and probabilities of 

occurrence (occur) for each scenario.  Also, after running the model consecutively we noticed 

that the value of the goal priority weights clearly had a large influence on the resulting 

optimal solution. Therefore, we expanded the model to generate a pre-decided number of 

solutions (ten in our experimental study) necessary to conduct a sensitivity analysis on the 

goal priority weights as well as the helicopter reliability percentage (see Section 3.4.3).  

3.3.3 MODEL FORMULATION SOLUTIONS 

For the following solutions representing the two different model formulations, the simulation 

and optimization was solved on a Dell Precision M60 laptop with a Pentium M 1.7 GHZ 

processor and 2GB of RAM.  Both model formulation solutions below were found using the 

CPLEX MIP solver embedded within the GAMS platform. The first model solution 

contained nine blocks of equations, seven blocks of variables, 39,919 non-zero elements, 806 

single equations, and 2,601 single variables.  The second model solution contained ten blocks 

of equations, eight blocks of variables, 39,928 non-zero elements, 814 single equations, and 

2,602 single variables. In both model formulations, there were a total of 2,079 binary 

variables representing the 1,890 Yijk arcbirds and the 189 Xjks MEDEVAC helicopter 

emplacement location options (the twenty-one potential MEDEVAC emplacement sites times 

three aircraft model types times {2, 3, 4} helicopters positioned at each MTF evacuation site). 

The CPLEX MIP solver found an optimal solution for both model formulations in less than 

one minute each, which proves useful for tactical MEDEVAC asset planning. The solution 

for the second model formulation required nearly ten times the number of iterations and 

nearly 1000 times the number of branch-and-bound nodes. Both solutions, however, required 

DOE Scenario Factors  

  occur P1 P2 P3 casrad vuln 

1 0.125 500 0.2 0.5 50.0 1.010 

2 0.125 500 0.2 0.5 50.0 1.005 

3 0.150 500 0.2 0.5 100.0 1.010 

4 0.100 500 0.2 0.5 100.0 1.005 

5 0.125 600 0.6 0.3 50.0 1.010 

6 0.125 600 0.6 0.3 50.0 1.005 

7 0.100 600 0.6 0.3 100.0 1.010 

8 0.150 600 0.6 0.3 100.0 1.005 
Table 6: Scenario Design Factors for Simulation 
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a similar number of valid cut inequalities. Table 7 depicts the GAMS solution for the first 

model formulation and Table 8 shows the GAMS solution for the second model formulation: 

GAMS Solution #1   

GUB cover cuts: 44 

Clique cuts: 2 

Cover cuts: 36 

Implied bound cuts: 80 

Flow cuts: 8 

Gomory Fractional cuts: 9 

Iterations: 1,236 

Branch-and-Bound nodes: 0 

Generation Time (seconds): 0.090 

Execution Time (seconds): 36.392 

Memory Used (MB): 519 
Table 7: Model Formulation #1 GAMS Solution 

 

GAMS Solution #2   

GUB cover cuts: 39 

Cover cuts: 29 

Implied bound cuts: 41 

Flow cuts: 3 

Gomory Fractional cuts: 8 

Iterations: 10,355 

Branch-and-Bound nodes: 942 

Generation Time (seconds): 0.151 

Execution Time (seconds): 33.078 

Memory Used (MB): 519 
Table 8: Model Formulation #2 GAMS Solution 

3.4 RESULTS AND ANALYSIS 

This section presents the results and analysis of our robust, multi-criteria decision analysis 

methodology.  Specifically, this weighted goal programming model optimizes over a given 

set of expected DOE scenarios to first stochastically generate the future casualty demand 

locations and actual monthly demand and then identify the optimal subset of MTF evacuation 

sites for the supporting MEDEVAC helicopters, and the type and number of aircraft to 

emplace at each MTF site.  In addition to displaying the graphical results, this section reports 

the descriptive statistics and sensitivity analyses from both model formulation solutions. 
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3.4.1 GRAPHICAL RESULTS 

The graphical results of both optimization model formulations have nearly equal solutions for 

the first-stage decision of where to generate casualties and the second-stage decision of how 

many, which type and where to optimally emplace MEDEVAC helicopters at a subset of the 

MTF evacuation sites. The analysis of this experiment clearly shows that both model 

formulations output identical results, except for the fact that the emplacement of aircraft types 

K1 and K3 are swapped at MTF sites E10 and E16 (see Figure 10 and Figure 11).  Also, 

MEDEVAC dispatch distributions differ slightly in both model solutions. Otherwise, both 

model solutions have equivalent types and quantities of MEDEVAC helicopters optimally 

positioned to successfully evacuate casualties within the two-hour threshold. 

For both model formulation solutions, Table 9 and Table 10 below depict the optimal subsets 

of MTF evacuation sites for helicopter emplacement, the type and quantity of aircraft to 

position at the chosen MTF evacuation sites, and the percent of total casualties evacuated by 

MEDEVAC helicopters dispatched from each MTF evacuation sites among the subset:  

Model Formulation #1 MTF and Helicopter Emplacements Percent 

Evacuated MTF X Y K1 K2 K3 

E3 173 186   2   15.3% 

E4 224 173     2 12.9% 

E10 243 221 2     11.8% 

E11 335 194     2 11.8% 

E12 432 162     2 11.8% 

E14 486 208     2 10.6% 

E15 537 354     2 14.1% 

E16 440 221     2 11.8% 
Table 9: Optimal MEDEVAC Emplacement for Model Formulation #1 Solution 

Model Formulation #2 MTF and Helicopter Emplacements Percent 

Evacuated MTF X Y K1 K2 K3 

E3 173 186   2   16.7% 

E4 224 173     2 10.3% 

E10 243 221     2 14.1% 

E11 335 194     2 12.8% 

E12 432 162     2 10.3% 

E14 486 208     2 12.8% 

E15 537 354     2 12.8% 

E16 440 221 2     10.3% 
Table 10: Optimal MEDEVAC Emplacement for Model Formulation #2 Solution 
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Figure 10: Model Formulation #1 Solution with Helicopter Emplacements 
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Figure 11: Model Formulation #2 Solution with Helicopter Emplacements 
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3.4.2 DESCRIPTIVE STATISTICS 

Descriptive statistics for the modeling scenarios are generated within our model implementation framework to capture the casualty generation, 

helicopter positioning, distance/speed/time, and scenario sampling statistics. Table 11 below pertains to these statistics for the first model: 

 
Table 11: Descriptive Statistics for Model Formulation #1 Solution 
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Additionally, Table 12 below depicts the descriptive statistics associated with the second model formulation solution: 

 
Table 12: Descriptive Statistics for Model Formulation #2 Solution  
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From the descriptive statistics displayed in Table 11 and Table 12, the total number of 

casualties generated in the first-stage of our stochastic optimization goal programming model 

was equivalent for both model formulation solutions with an average of thirty-six casualties 

generated per month, which is based on the probability mass function for the number of 

casualties evacuated from the same location used in our experiment.  This amount slightly 

exceeds the historical, deterministic data of thirty-one WIA soldiers per month.  

Additionally, it is interesting to note the actual number and percentage of casualties 

evacuated, where only an average of 27.5% and 30% of total casualties were evacuated each 

month. The reason for these low amounts and percentages of evacuated WIA soldiers directly 

correlates to the Pijkw values, the probability of successfully evacuating patients from each of 

the casualty demand locations within two hours. Although Appendix F – depicting the 

maximum probability of successful casualty evacuation at each casualty location – illustrates 

that most of the casualty locations have a maximum success rate of 100% for each of the 

scenarios, Appendix G displays more accurate data concerning the average probabilities of 

success. Hence, the overall average probability of successfully evacuating casualties within 

two hours from all casualty demand locations over all scenarios equals 63%. These averages, 

however, do not account for the combinations of i, j and k with success rates of 0% (if this 

were the case, then the average percentages would be much lower around 10 to 20%).  In 

fact, most of the combinations of i, j and k have success probabilities of 0% because of the 

location we set for each AO hotbed, their distance away from the pre-determined feasible 

MTF evacuation sites, and our stochastic method for generating casualties up to 100 nautical 

miles away from an AO hotbed location.  Regardless of these casualty statistics, nearly all of 

the WIA soldiers will be evacuated from the casualty demand locations in an actual combat 

environment despite the two-hour MEDEVAC time threshold.  

Also, Table 11 and Table 12 display the mean MEDEVAC distance, velocity and time 

statistics as well as the sampling statistics for each modeling scenario. These statistics 

consider all MEDEVAC times to evacuate casualties and not simply times under the two-

hour threshold.  Therefore, it is interesting to note that the average over all scenarios of mean 

MEDEVAC times was roughly two hours for both model formulation solutions.  

Additionally, the final standard error between the Monte Carlo simulation average 

MEDEVAC time and the mean MEDEVAC time over all scenarios is less than 12% in both 

model formulation solutions (Note: Euclidean distance is used for these time calculations).  
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3.4.3 SENSITIVITY ANALYSES 

As stated earlier, our model executes a preset number of times to better aid the decision-

maker with a range of solutions as well as perform sensitivity analyses on two different 

model data parameters. Particularly, we analyzed solution sensitivity for both model 

formulations by measuring the impact on the number of casualties evacuated per month when 

changing each goal priority weight and the probability that at least one helicopter is available 

to conduct a MEDEVAC mission.  It is evident that the priority weight of Goal #1 has the 

greatest impact on the optimal solution when compared with the two other goal weights. 

Figure 12, Figure 13 and Figure 14 below show the goal priority weight sensitivity analyses 

for the first model formulation, which compares the average priority goal weight with the 

average number of casualties evacuated over ten runs: 

 
Figure 12: Model #1 Sensitivity of Average Priority Weight for Goal #1 

 
Figure 13: Model #1 Sensitivity of Average Priority Weight for Goal #2 
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Figure 14: Model #1 Sensitivity of Average Priority Weight for Goal #3 

It is clear from Figure 13 and Figure 14 that the average number of casualties evacuated over 

the scenario set is not sensitive to the second or third goal priority weights, but Figure 12 

illustrates an increasing linear relationship between the first goal weight and the number of 

casualties evacuated.  Additionally, we tested the sensitivity of the helicopter availability 

reliability from 90% to 100% probability that at least one helicopter is available on a MTF 

evacuation site but found no significant relationship; this is depicted in Figure 15 below: 

 

Figure 15: Model #1 Sensitivity of Helicopter Availability Reliability 
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relationship between the second goal priority weight and the number of casualties evacuated 

for the second model formulation solution: 

Figure 16: Model #2 Sensitivity of Average Priority Weight for Goal #2 

The results and analysis presented here clearly highlight the functionality of our scenario-

based, stochastic optimization goal programming model for determining the optimal 

emplacement (with respect to aircraft type and quantity) of MEDEVAC helicopters at a 

subset of feasible MTF evacuation sites such that the aggregate expected casualty demand 

coverage is maximized while the MEDEVAC helicopter spare capacities and maximal MTF 

site total vulnerability are minimized. Furthermore, the solutions to our experiment 

concerning the Afghanistan MEDEVAC asset optimization problem are based on notional 

input data for U.S. Army security purposes as well as numerous assumptions made for 

quantification of the model data parameters.   Last, it is evident from the descriptive statistics 

and sensitivity analyses that our optimal solutions obtained from both model formulations are 

influenced by numerous factors as previously discussed. 

4 CONCLUSIONS AND RECOMMENDATIONS 

4.1 CONCLUSIONS 

Although more casualties survive compared to any other war due to the current Health 

Service Support system, the U.S. Army can still greatly improve its systematic approach to 

treat and air evacuate casualties from combat zones in order to maintain a healthy force and 

to conserve combat strength of deployed soldiers. Since the beginning of Operation Enduring 

Freedom, military commanders have faced a significant combinatorial challenge integrating 

limited air evacuation assets into a comprehensive system for the entire combat theatre. As a 
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pillar of military medical doctrine, optimizing the emplacement of responsive field-sited 

medical treatment facilities and aeromedical evacuation assets can increase survivability for 

those wounded soldiers air evacuated from the battlefield. Furthermore, thorough 

investigation and development of improved analytical solutions derived from objectives 

concerning casualty coverage, MEDEVAC helicopter utilization, and vulnerability to enemy 

attack measures directly supports the military medical mission.  

This work described a robust, multi-criteria decision analysis methodology using a scenario-

based, stochastic optimization goal programming model for U.S. Army medical planners to 

use as a strategic and tactical aeromedical evacuation asset planning tool to help sustain and 

improve the aeromedical evacuation system in Afghanistan. Specifically, this two-stage 

model first generated casualty demand locations and then optimized over a set of expected 

scenarios based on these stochastically-determined casualty locations to emplace the 

minimum number of helicopters at each medical treatment facility necessary to maximize the 

coverage of the theatre-wide casualty demand and the probability of meeting that demand, 

while minimizing the maximal medical treatment facility evacuation site total vulnerability. 

Although our solution methodology used in the experiment focused on optimizing the U.S. 

Army‟s aeromedical evacuation system in Afghanistan, the results clearly demonstrate that 

our model can be employed as a useful analytical tool for decision-makers seeking to 

optimize the emplacement of limited resources based on the probability of covering 

geographically variant demand requirements. Our decision analysis methodology utilizes 

multi-criteria, scenario planning and stochastic optimization methods to help support tactical 

MEDEVAC asset planning for steady-state military operations.  Endless opportunities exist 

to utilize our solution methodology within and outside the military medical community. 

4.2 LIMITATIONS AND FUTURE WORK 

The results of our experiment are limited to the assumptions made and the data used during 

model development.  Therefore, our experiment would improve with 2009 MEDEVAC data 

from in-theatre subject matter experts, particularly to fine-tune the quantification of numerous 

model data parameters and the various probability distributions.  

As seen from our results and analyses, optimal model solutions are heavily dependent on the 

DOE scenarios input by the decision-maker, where the priority weight of the first 

optimization goal has the greatest sensitivity. Additionally, our solution methodology is 
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limited by the probability of successfully evacuating patients from each of the casualty 

demand locations within two hours.  This data parameter greatly affects the number and 

percent of actual monthly WIA casualty evacuations. Future work is needed to further 

develop and implement our three-dimensional shortest helicopter path algorithm to compute 

this essential model data parameter. Our algorithm implementation remains a work-in-

progress due to the complexity associated with data collection for the feasibility conditions 

(as the real data is classified) and the algorithm inputs, yet proves useful as a future modeling 

add-in for more accurate three-dimensional helicopter flight times during combat operations. 

Moreover, this experiment utilizes only a small sample of air ambulance and medical 

treatment facility attributes. The addition of attributes, however, increases problem 

complexity and slows the model computation time, which is a significant limitation for 

tactical MEDEVAC asset optimization.  Also, our methodology only considers a monthly 

planning time horizon as opposed to multi-period analysis because multi-period analysis is 

not particularly useful for geographically variant resource emplacement in military stability 

operations.  Nonetheless, a multi-period extension to the model would be useful for strategic 

medical modeling in non-stability combat operations where the operations tempo varies over 

time and sufficient planning over multiple time periods is necessary. 

Further expansion of the model is needed to account for ground casualty evacuation assets 

and not only MEDEVAC helicopter emplacement.  This methodology can also be extended 

to account for medical treatment facility patient capacities as well as inserting parameters that 

model future capabilities of evacuation and hospital assets. The model, however, can be 

easily re-formulated to account for these changes as well as different objective functions and 

constraints. Future areas of research concern dynamic approaches and techniques for military 

medical modeling to assist U.S. Army medical planners in both ground and air evacuation 

asset scheduling and routing decisions.  
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5 APPENDICES 

5.1 APPENDIX A: MEDICAL TREATMENT FACILITY LOCATIONS 

Province MTF X Y 

NIMRUZ E1 108 157 

HELMAND E2 162 157 

FARAH E3 173 186 

HELMAND E4 224 173 

KANDAHAR E5 278 170 

HERAT E6 113 256 

HERAT E7 154 254 

BADGHIS E8 197 327 

BADGHIS E9 216 319 

FARAH E10 243 221 

URUZGAN E11 335 194 

ZABUL E12 432 162 

PAKTYA E13 470 170 

PAKTYA E14 486 208 

PANJSHER E15 537 354 

GHAZNI E16 440 221 

GHOR E17 335 302 

GHOR E18 286 337 

FARYAB E19 286 378 

JAWZJAN E20 297 424 

FARYAB E21 273 427 

 

These twenty-one medical treatment facility locations plotted on a nautical-mile grid 

coordinate system represent the feasible helicopter emplacement sites within the experiment. 
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5.2 APPENDIX B: TALIBAN/INSURGENT ACTIVITY IN AFGHANISTAN 
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5.3 APPENDIX C: GENERATING CASUALTY LOCATIONS PSEUDO-CODE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If (rand1(i, w) <= .073, 

cas(i,'X',w)=ao('X','1') + mag(i,w) * cos(casx(i,w)); 

        cas(i,'Y',w)=ao('Y','1') + mag(i,w) * sin(casy(i,w)); 

else if (rand1(i, w) <=.252),                     

cas(i,'X',w)=ao('X','2') + mag(i,w) * cos(casx(i,w)); 

        cas(i,'Y',w)=ao('Y','2') + mag(i,w) * sin(casy(i,w)); 

else if (rand1(i, w) <= .432), 

        cas(i,'X',w)=ao('X','3') + mag(i,w) * cos(casx(i,w)); 

           cas(i,'Y',w)=ao('Y','3') + mag(i,w) * sin(casy(i,w)); 

else if (rand1(i, w) <= .716), 

 cas(i,'X',w)=ao('X','4') + mag(i,w) * cos(casx(i,w)); 

        cas(i,'Y',w)=ao('Y','4') + mag(i,w) * sin(casy(i,w)); 

else                                  

cas(i,'X',w)=ao('X','5') + mag(i,w) * cos(casx(i,w)); 

          cas(i,'Y',w)=ao('Y','5') + mag(i,w) * sin(casy(i,w)); 

); 
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5.4 APPENDIX D: GENERATING CASUALTY DEMAND PSEUDO-CODE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loop(i, 

 leth(i,w) = uniform(1.0,1.154); 

           if(rand2(i,w) <= .874, 

                      lambda(i,w) = round(1*leth(i,w)); 

       elseif (rand2(i,w) <= .96), 

                     lambda(i,w) = round(2*leth(i,w)); 

        elseif (rand2(i,w) <= .99), 

                  lambda(i,w) = round(3*leth(i,w)); 

         else 

                    lambda(i,w) = round(4*leth(i,w)); 

  ); 

          cas_d(w) = cas_d(w) + lambda(i,w); 

        a(i,w) = lambda(i,w) / cas_d(w); 

); 
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5.5 APPENDIX E: ACTUAL MONTHLY CASUALTY DEMAND 

 

Casualty 
Location # 

Scenario # 

1 2 3 4 5 6 7 8 
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 1 2 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 2 1 

3 2 1 1 1 1 2 1 1 

4 1 1 1 1 1 3 1 1 

5 1 1 1 2 2 1 1 1 

6 1 2 4 1 1 1 1 1 

7 1 1 1 1 2 1 1 2 

8 1 1 1 1 1 2 1 1 

9 1 1 1 1 1 1 3 1 

10 1 1 1 1 1 1 1 1 

11 1 1 3 1 1 1 1 1 

12 1 1 1 1 2 1 1 1 

13 1 1 1 1 2 1 1 1 

14 1 1 1 2 3 1 1 1 

15 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 3 1 

17 1 1 1 3 1 1 1 1 

18 1 2 1 1 1 1 1 2 

19 2 1 1 1 1 1 1 2 

20 1 1 1 3 1 1 1 1 

21 2 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 

23 1 1 1 2 1 1 1 1 

24 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 

26 2 1 1 2 2 3 1 1 

27 1 1 1 1 1 1 1 1 

28 1 1 1 1 1 1 1 1 

29 1 1 1 1 1 1 1 1 

30 1 1 1 1 2 1 3 1 

Total = 35 32 35 38 38 36 37 33 
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5.6 APPENDIX F: MAXIMUM PROBABILITY OF SUCCESSFUL EVACUATION 

 

Casualty 
Location 

# 

Scenario # 

1 2 3 4 5 6 7 8 
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1 100% 78% 100% 99% 100% 100% 0% 100% 

2 100% 39% 27% 100% 100% 100% 100% 2% 

3 100% 100% 0% 97% 99% 100% 100% 100% 

4 61% 100% 100% 60% 100% 100% 100% 100% 

5 98% 100% 100% 100% 100% 60% 100% 100% 

6 100% 100% 100% 100% 99% 100% 100% 100% 

7 97% 100% 100% 100% 100% 100% 100% 100% 

8 100% 100% 100% 100% 100% 100% 100% 42% 

9 99% 100% 100% 100% 100% 100% 100% 100% 

10 100% 100% 100% 100% 100% 94% 93% 90% 

11 100% 100% 100% 100% 100% 100% 100% 100% 

12 93% 100% 100% 96% 100% 100% 100% 70% 

13 100% 100% 100% 100% 100% 100% 88% 100% 

14 100% 100% 100% 99% 100% 100% 62% 100% 

15 100% 100% 100% 100% 100% 100% 100% 99% 

16 100% 100% 100% 52% 100% 100% 1% 100% 

17 89% 100% 24% 100% 100% 100% 100% 100% 

18 91% 100% 100% 100% 100% 100% 93% 100% 

19 100% 100% 100% 100% 100% 97% 66% 97% 

20 100% 100% 100% 100% 100% 100% 85% 100% 

21 100% 84% 100% 100% 100% 94% 100% 100% 

22 100% 100% 100% 100% 100% 100% 100% 100% 

23 100% 100% 100% 100% 91% 100% 100% 87% 

24 96% 100% 100% 100% 100% 100% 21% 100% 

25 100% 100% 100% 100% 100% 100% 100% 80% 

26 91% 95% 100% 100% 100% 100% 46% 100% 

27 100% 100% 94% 93% 100% 100% 100% 100% 

28 100% 99% 100% 27% 100% 100% 100% 100% 

29 100% 100% 100% 100% 100% 100% 100% 100% 

30 100% 100% 95% 100% 100% 100% 95% 100% 
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5.7 APPENDIX G: AVERAGE PROBABILITY OF SUCCESSFUL EVACUATION 

 

Casualty 
Location 

# 

Scenario # 

1 2 3 4 5 6 7 8 
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1 51% 47% 60% 66% 51% 57% 0% 100% 

2 74% 28% 11% 49% 46% 43% 100% 1% 

3 44% 100% 0% 96% 64% 100% 99% 64% 

4 58% 48% 100% 57% 54% 40% 100% 44% 

5 54% 73% 59% 61% 49% 36% 55% 75% 

6 77% 100% 100% 60% 60% 62% 100% 100% 

7 43% 44% 100% 100% 61% 52% 78% 100% 

8 76% 54% 75% 56% 61% 56% 55% 21% 

9 51% 51% 54% 56% 75% 66% 74% 54% 

10 74% 71% 42% 79% 51% 51% 88% 61% 

11 59% 99% 66% 72% 78% 74% 85% 63% 

12 49% 61% 100% 51% 60% 100% 100% 36% 

13 79% 100% 53% 70% 45% 44% 39% 36% 

14 99% 44% 49% 43% 52% 66% 61% 54% 

15 46% 60% 72% 45% 100% 75% 65% 42% 

16 54% 45% 80% 43% 46% 100% 1% 53% 

17 46% 100% 21% 61% 50% 55% 61% 82% 

18 40% 91% 51% 60% 100% 97% 90% 61% 

19 59% 44% 43% 79% 61% 48% 45% 52% 

20 51% 78% 40% 55% 61% 61% 28% 67% 

21 57% 27% 53% 53% 46% 59% 62% 76% 

22 76% 77% 58% 100% 43% 72% 66% 44% 

23 67% 100% 60% 100% 43% 100% 62% 86% 

24 59% 75% 61% 81% 68% 55% 18% 100% 

25 76% 100% 64% 71% 57% 75% 70% 43% 

26 68% 61% 78% 100% 76% 64% 40% 59% 

27 80% 100% 62% 57% 59% 68% 100% 67% 

28 77% 47% 59% 17% 51% 51% 47% 53% 

29 59% 52% 50% 64% 79% 76% 85% 58% 

30 49% 68% 51% 100% 81% 65% 48% 77% 
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5.8 APPENDIX H: GAMS PROGRAMMING CODE 

$Title MEDEVAC Optimization Afghanistan Problem - Goal Programming Model 

$Ontext 

This work this work describes a strategic approach to optimizing the U.S. Army's 

aeromedical evacuation system in Afghanistan.  Specifically, this work provides a robust, 

multi-criteria, decision-analysis solution methodology using a scenario-based, stochastic goal 

programming optimization model that U.S. Army medical planners can use as a strategic and 

tactical MEDEVAC asset planning tool to engender a more effective Health Service Support 

system in Operation Enduring Freedom. 

$Offtext 

 

*Seed for the random number generator 

Option seed=100; 

*Limits the amount of CPLEX solver time to 100,000 seconds 

Option ResLim=100000; 

*Limits the number of CPLEX solver iterations to 100,000 runs 

Option IterLim=100000; 

 

Sets 

w scenarios                                                                      /1*8/ 

i casualty demand locations                  /1*30/ 

j feasible MEDEVAC_MTF helicopter emplacement sites                  /E1*E21/ 

k aircraft model types                                                  /K1, K2, K3/ 

s number of aircraft to be co-located at location 'j'                   /2, 3, 4/ 

n number of U.S. Army Areas of Operation (AO) 'hotbeds'                        /1*5/ 

xy xy pairs of coordinates                                                    /X, Y/ 

t Monte Carlo simulation trials                                           /1*100/ 

fact factors involved in scenarios          /occur, P1, P2, P3, casrad, vuln/; 

 

Parameters 

*Non-stochastic Components 

dist_pu(i,j,k,w) distance between cluster 'i' and MEDEVAC_MTF site 'j' to pickup casualty 

with aircraft 'k' in scenario w 

mag(i,w)  radius around AO 'hotbed' for which casualties are likely to occur per scenario  

a(i,w)  the proportion of demand originating in location 'i' such that the summation of 

a(i) for all 'i' equals 1 for scenario w 

c(k)   the number of aircraft model type k available in theatre 

/ 

K1        2 

K2        3 

K3        12/ 

 

o(k)   the fleet operational readiness for aircraft model 'k' (percentage) 

/ 

K1        0.667 

K2        0.667 

K3        0.667/ 
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lit(k)   the number of litters available in aicraft type 'k' 

/ 

K1     4 

K2     4 

K3     6/ 

 

p_comp       the probability of at least one available aircraft /.95/ 

td_min             triangular distribution minimum value (5 minutes in hours) /0.083/ 

td_max           triangular distribution maximum value (15 minutes in hours) /0.25/ 

td_most           triangular distribution most likely value (10 minutes in hours) /0.167/ 

thresh              the measure of effectiveness - successfully evacuation within 2 hours /2/ 

count              counter for the Monte Carlo Simulation to determine the number of successes 

cas_d(w)          parameter used to calculate the total demand of all casualty locations in w 

time_med        counter for the total time to MEDEVAC patient in the Monte Carlo simulation 

evac_time(i,j,k,w) the Monte Carlo simulation average MEDEVAC time for 'i' to/from 'j' in w 

max_P(i,w)     the Maximum Probability of MEDEVAC success at 'i' for each scenario w 

vul_cap(j,w)    the vulnerability capacity for every facility 'j' in scenario w 

en_attack(j)     the enemy capability lethality factor per MEDEVAC_MTF site 'j' 

/ 

E1        1.014 

E2        1.090 

E3        1.025 

E4        1.000 

E5        1.154 

E6        1.017 

E7        1.017 

E8        1.012 

E9        1.012 

E10        1.025 

E11        1.025 

E12        1.044 

E13        1.047 

E14        1.047 

E15        1.000 

E16        1.062 

E17        1.005 

E18        1.005 

E19        1.009 

E20        1.004 

E21        1.009/ 

 

factors(w, fact) factors for each scenario in the model 

totP            the total number of P greater than 0 per i and w 

avg_P(i,w)   the average probability of successfully evacuating patients at i in scenario w 

 

*Stochastic Components 

vel(i,j,k,w,t)    helicopter transport velocity in trial t between MEDEVAC_MTF site 'j' and 

casualty location 'i' with aircraft 'k' in scenario w 

ao(xy,n)          AO 'hotbed' NM grid coordinates in Afghanistan 
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cas(w,i,xy)   casualty location from AO 'hotbed' center of mass in scenario w 

evac(j,xy)       coordinates for MEDEVAC helicopter emplacement sites 

rand1(i,w)       random number used to determine casualty locations 'i' in scenario w 

rand2(i,w)        random number used to determine number of casualties at 'i' in scenario w 

rand3(i,j,k,w,t)  random number in trial t used for triangular distribution calculation in w 

rand4(i,j,k,w,t)  random number in trial t used for triangular distribution calculation in w 

rand5(i,j,k,w,t)  random number in trial t used for triangular distribution calculation in w 

rand6(i,j,k,w,t)  random number in trial t used for triangular distribution calculation in w 

rand7(i,j,k,w,t)  random number in trial t used for triangular distribution calculation in w 

rand8(i,j,k,w,t)  random number in trial t used for triangular distribution calculation in w 

rand9(j,w)  random number used for enemy attack probability in scenario w 

casx(i,w)         random angle from AO center for which casualties are likely to occur in w 

casy(i,w)         random angle from AO center for which casualties are likely to occur in w 

leth(i,w)          lethality multiplier to model enemy capability uncertainty in scenario w 

time_inj(i,j,k,w,t) the time in trial t from injury at the demand location to notification of 

supporting MEDEVAC helicopter in scenario w 

time_wup(i,j,k,w,t)  the time in trial t from notification to wheels up in scenario w 

time_pup(i,j,k,w,t)   the time in trial t for flight time to pickup in scenario w 

time_ld(i,j,k,w,t)      the time in trial t for patient load time at pickup location in scenario w 

time_drop(i,j,k,w,t)  the time in trial t for flight time to medical treatment facility in w 

time_offld(i,j,k,w,t)  the time in trial t for patient off-load time at the MTF in scenario w 

trial(i,j,k,w,t)  the medevac time per trial t in scenario w 

P(i,j,k,w)         the probability of successfully evacuating from casualty cluster 'i' in scenario 

w with aircraft 'k' dispatched from closest location 'j' within the required 2 

hour measure of effectiveness back to location 'j' in scenario w 

r(j,k,s,w)      the maximum demand that can be supported from helicopter location 'j' in 

scenario w with 's' number of aircraft type 'k' before necessitating 's+1' in w 

lambda(i,w)     the actual demand emanating from casualty location 'i' in per month in w 

vuln(j,w)          the vulnerability of the MEDEVAC_MTF site 'j' in scenario w 

; 

 

Table factors(w,fact) 

         occur         P1        P2          P3         casrad       vuln 

1        0.125        500        .2          .5         50.0          1.010 

2        0.125        500        .2          .5         50.0          1.005 

3        0.150        500        .2          .5         100.0        1.010 

4        0.100        500        .2          .5         100.0        1.005 

5        0.125        600        .6          .3         50.0          1.010 

6        0.125        600        .6          .3         50.0          1.005 

7        0.100        600        .6          .3         100.0        1.010 

8        0.150        600        .6          .3         100.0        1.005 

; 

 

*Generate a random uniform seeds 

rand1(i,w)=uniform(0,1); 

rand2(i,w)=uniform(0,1); 

rand3(i,j,k,w,t)=uniform(0,1); 

rand4(i,j,k,w,t)=uniform(0,1); 

rand5(i,j,k,w,t)=uniform(0,1); 
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rand6(i,j,k,w,t)=uniform(0,1); 

rand7(i,j,k,w,t)=uniform(0,1); 

rand8(i,j,k,w,t)=uniform(0,1); 

rand9(j,w)=uniform(0,1); 

 

*Assign the radius of casualties around each AO 'Hotbed' 

mag(i,w)=uniform(-factors(w,'casrad'),factors(w,'casrad')); 

 

*Setup AO 'Hotbed' Locations on the Grid 

ao('X','1')=108; ao('Y','1')=189; 

ao('X','2')=378; ao('Y','2')=162; 

ao('X','3')=270; ao('Y','3')=162; 

ao('X','4')=567; ao('Y','4')=324; 

ao('X','5')=540; ao('Y','5')=243; 

 

*Set up MEDEVAC/MTF site locations on the grid 

*Sites support both hospital and evacuation assets 

Table evac(j,xy) 

          X         Y 

E1       108     157 

E2       162     157 

E3       173     186 

E4       224     173 

E5       278     170 

E6       113     256 

E7       154     254 

E8       197     327 

E9       216     319 

E10      243     221 

E11      335     194 

E12      432     162 

E13      470     170 

E14      486     208 

E15      537     354 

E16      440     221 

E17      335     302 

E18      286     337 

E19      286     378 

E20      297     424 

E21      273     427 

; 

 

*casx/casy represent randomly generated angles up to 2*pi from the AO brigade 

casx(i,w)=uniform(0,6.28); 

casy(i,w)=uniform(0,6.28); 
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loop(w, 

*Loop over all scenarios 

loop(k, 

*Loop over each aircraft type 

         loop(j, 

*Loop over each MEDEVAC/MTF asset location 

                 loop(i, 

*Loop over each casualty demand location 

                         if(rand1(i,w)<=.073, 

                                 cas(w,i,'X')=ao('X','1')+mag(i,w)*cos(casx(i,w)); 

                                 cas(w,i,'Y')=ao('Y','1')+mag(i,w)*sin(casy(i,w)); 

                         elseif (rand1(i,w)<=.252), 

                                 cas(w,i,'X')=ao('X','2')+mag(i,w)*cos(casx(i,w)); 

                                 cas(w,i,'Y')=ao('Y','2')+mag(i,w)*sin(casy(i,w)); 

                         elseif (rand1(i,w)<=.432), 

                                 cas(w,i,'X')=ao('X','3')+mag(i,w)*cos(casx(i,w)); 

                                 cas(w,i,'Y')=ao('Y','3')+mag(i,w)*sin(casy(i,w)); 

                         elseif (rand1(i,w)<=.716), 

                                 cas(w,i,'X')=ao('X','4')+mag(i,w)*cos(casx(i,w)); 

                                 cas(w,i,'Y')=ao('Y','4')+mag(i,w)*sin(casy(i,w)); 

                         else 

                                 cas(w,i,'X')=ao('X','5')+mag(i,w)*cos(casx(i,w)); 

                                 cas(w,i,'Y')=ao('Y','5')+mag(i,w)*sin(casy(i,w)); 

                         ); 

                 ); 

 

*Assign Distributions for the actual demand at each 'i' - number of casualties 

                 cas_d(w)=0; 

                 loop(i, 

*Apply a lethality multiplier to the casualty generated at each location 

*Evaluates sensitivity of location selection based on the number of injuries 

*experienced on a site - and enemy capability uncertainty measure 

                         leth(i,w)=uniform(1.0,1.154); 

 

                         if(rand2(i,w)<=.874, 

                                 lambda(i,w)=round(1*leth(i,w)); 

                         elseif (rand2(i,w)<=.96), 

                                 lambda(i,w)=round(2*leth(i,w)); 

                         elseif (rand2(i,w)<=.99), 

                                 lambda(i,w)=round(3*leth(i,w)); 

                         else 

                                 lambda(i,w)=round(4*leth(i,w)); 

                         ); 

                         cas_d(w) = cas_d(w) + lambda(i,w); 

                 ); 

*Assign the proportion of demand originating in location 'i' such that 

*the summation of a(i) for all 'i' equals 1 for each scenario w 

                 loop(i, 

                         a(i,w)=lambda(i,w) / cas_d(w); 
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*Conduct a Monte Carlo Simulation with 100 trials 

*Loop over t simulation MEDEVAC time trials 

                         count=0; 

                         time_med=0; 

                         loop(t, 

 

*Calculate the distances using Euclidean Distance Formula 

                        dist_pu(i,j,k,w)=sqrt(sqr(cas(w,i,'X')-evac(j,'X'))+sqr(cas(w,i,'Y')-evac(j,'Y'))); 

 

*Stochastic Calculation of time_inj(i,j,k,w) 

*Time from injury at the demand location to notification of supporting MEDEVAC aircraft 

if((rand3(i,j,k,w,t)*(td_max-td_min)+td_min)>td_most, 

       time_inj(i,j,k,w,t)=(td_most + (min(rand4(i,j,k,w,t),rand5(i,j,k,w,t))*(td_max-td_most))); 

else 

        time_inj(i,j,k,w,t)=(td_most - (min(rand4(i,j,k,w,t),rand5(i,j,k,w,t))*(td_most-td_min))); 

); 

 

*Stochastic Calculation of time_wup(i,j,k,w) 

*The time from notification to wheels up 

*Based on 2008 MEDEVAC AAR, mean time = 20-minute run up 

*Thus, assume a normal distribution w/ mean=20 min stdDev=5 min (compute in hours) 

                         time_wup(i,j,k,w,t)=normal(0.33,0.083); 

 

*Uniform random distribution of the MEDEVAC helicopter speed 

*from 120 to 193 Knots (NM/hour) depending on aircraft type 'k' and other random factors 

                         vel(i,j,k,w,t)=uniform(120,193); 

 

*Stochastic Calculation of time_pup(i,j,k,w) - the flight time to pickup 

time_pup(i,j,k,w,t)=dist_pu(i,j,k,w)/vel(i,j,k,w,t); 

 

*Stochastic Calculation of time_ld(i,j,k,w) - the patient load time at pickup location 

if((rand6(i,j,k,w,t)*(td_max-td_min)+td_min)>td_most, 

        time_ld(i,j,k,w,t)=(td_most + (min(rand7(i,j,k,w,t),rand8(i,j,k,w,t))*(td_max-td_most))); 

else 

        time_ld(i,j,k,w,t)=(td_most - (min(rand7(i,j,k,w,t),rand8(i,j,k,w,t))*(td_most-td_min))); 

); 

 

*Stochastic Calculation of time_drop(i,j,k,w) the flight time to medical treatment facility 

*Assume the distance is the same to pick-up and drop-off patient because the same location 'j' 

                         time_drop(i,j,k,w,t)=dist_pu(i,j,k,w)/vel(i,j,k,w,t); 

 

*Stochastic Calculation of time_offld(i,j,k,w) the patient off-load time 

*Based on the 2008 MEDEVAC AAR, they assumed a 5-minute off-load time 

*Therefore, assume a normal distribution w/ mean =5 min stdDev=2 min 

                         time_offld(i,j,k,w,t) = normal(0.083, 0.033); 

 

       

trial(i,j,k,w,t)=time_inj(i,j,k,w,t)+time_wup(i,j,k,w,t)+time_pup(i,j,k,w,t)+ 

time_ld(i,j,k,w,t)+time_drop(i,j,k,w,t)+time_offld(i,j,k,w,t); 
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if (trial(i,j,k,w,t)<thresh,  

count=count+1 ;  

else 

          count=count ; 

); 

 

time_med = time_med + trial(i,j,k,w,t); 

*Close the 't' loop 

); 

 

                         P(i,j,k,w)=count/card(t); 

                         evac_time(i,j,k,w) = time_med/card(t); 

 

*Close the 'i' loop 

); 

 

*Calculating r(j,k,s,w) - the maximum demand that can be supported from helicopter location  

            loop(s, 

                     r(j,k,s,w)=lit(k) * p_comp * o(k) * s.val; 

*Close the 's' loop 

            ); 

 

*Calculate vuln(j,w) - the vulnerability of the MEDEVAC_MTF site 'j' 

*Equals the enemy capability lethality factor at 'j' x random uniform prob. of attack 

                        vuln(j,w) = en_attack(j)*rand9(j,w); 

 

*Calculate the vulnerability capacity level for each facility 'j' 

                         vul_cap(j,w) = factors(w, 'vuln'); 

 

*Close the 'j' loop 

         ); 

*Close the 'k' loop 

); 

*Close the 'w' loop 

); 

 

Binary Variables 

Y(i,j,k)    a binary variable for air evacuation assets, equals 1 if evacuation from location 

'i' with aircraft type 'k' dispatched from location 'j' is equal to or greater than 

pre-specified probability 'p' and 'j' is the nearest open location and facilities 

evacuation within 2 hours, 0 otherwise 

 

X(j,k,s)        a binary variable for positioning of aircraft, equals 1 if 's' number of aircraft 

type 'k' are to be considered for positioning at location 'j', otherwise 0; 

 

Positive Variables 

dmin1(w)       the underachievment deviation for Goal 1 

dplus2(j,k,w)   the overachievement deviations for Goal 2 for each 'j' and 'k' 
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dplus3(w)        the overachievemnt deviation for Goal 3 

V                 the value of the maximum vulnerability to be minimized 

Q                 the value of the maximum expected weighted scenario solution (Model #2); 

 

Free Variable 

z                 the overall objective function cost to be minimized; 

 

Equations 

OBJFunc   define the overall goal programming objective function 

G1         Goal 1 - Maximize the aggregate expected demands covered 

G1_cp     Goal 1 - Coverage Probability Constraint 

G2         Goal 2 - Minimize the spare capacities of air ambulances 

G2_ap     Goal 2 - Aircraft Positioning Constraint 

G2_aa     Goal 2 - Aircraft Available Constraint 

G3         Goal 3 - Minimize the maximum vulnerability over the 'j' locations 

G3_vul    Goal 3 - Vulnerability Capacity Constraint 

G3_max    Goal 3 - Maximum Vulnerability Constraint 

objf       the objective function constraint for Q (Model #2); 

 

*--------------------------------------------------------------------- 

* GOAL Program Equations 

*--------------------------------------------------------------------- 

G1(w)     .. sum((i,j,k), (a(i,w)*P(i,j,k,w)*Y(i,j,k))) + dmin1(w) =e= 1 ; 

G2(j,k,w).. sum(s, r(j,k,s,w)*X(j,k,s)) - sum(i, lambda(i,w)*Y(i,j,k)) - dplus2(j,k,w)  =e= 0 ; 

G3(w)     .. V - dplus3(w) =e= 0 ; 

 

*--------------------------------------------------------------------- 

* Hard Constraints 

*--------------------------------------------------------------------- 

G1_cp(i)     .. sum((j,k), Y(i,j,k)) =l= 1 ; 

G2_ap(j,k)     .. sum(s, X(j,k,s)) =l= 1 ; 

G2_aa(k)        .. sum(s, s.val*sum(j, X(j,k,s))) =l= c(k) ; 

G3_vul(j,w)    .. sum((i,k), vuln(j,w)*Y(i,j,k)) =l= vul_cap(j,w) ; 

G3_max(j)      .. V =g= sum((w,i,k), vuln(j,w)*Y(i,j,k)) ; 

objf(w)           .. Q =g= factors(w,'occur')*((factors(w,'P1')*dmin1(w)) + 

(factors(w,'P2')*sum((j,k), dplus2(j,k,w))) + (factors(w,'P3')*dplus3(w))) (Model #2);  

 

*--------------------------------------------------------------------- 

* Objective Function Formulation 

*The three goals seek to emplace the minimum number of aircraft at each location 'j' 

*necessary to maximize the coverage of the theatre-wide medevac demand 

*and the probability of meeting that demand, while minimizing the maximal 

*MTF site total vulnerability over the given set of scenarios 

*--------------------------------------------------------------------- 

 

OBJFunc.. z =e= sum(w,factors(w,'occur')*((factors(w,'P1')*dmin1(w)) + 

(factors(w,'P2')*sum((j,k), dplus2(j,k,w))) + (factors(w,'P3')*dplus3(w)))); 

 

OBJFunc.. z =e= Q (Model #2); 
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*Setup the optimization model 

model m /all/; 

*Suppress the number of rows listed to 0 

option limrow=0; 

*Suppress the number of columns listed to 0 

option limcol=0; 

*Sets relative optimality tolerance - i.e. no tolerance because 0 = OPT value 

option optcr=0; 

*Solve the Mixed Integer Program model using CPLEX solver 

m.OptFile = 1; 

option MIP = Cplex; 

SOLVE m using MIP minimizing z; 

 

Parameters 

*Calculate Casualty Statistics 

emplace(j,xy)   the optimal emplacement of MTF evacuation sites over all scenarios 

numcas_tot(w) total number of casualties per month in scenario w 

numevac(j,w)      number of casualties evacuated from casualty sites to_from site 'j' in w 

numevac2(w)       total number of casualties evacuated in each scenario w 

numevac3(j)       total number of casualties over all scenaries evacuated by 'j' 

percevac(w)       percent of total number casualties that are evacuated in each scenario 

tot_evac          total number of patients evacuated over all scenarios 

percevac2(j)      percent of total number of evacuated casualted evacuated by 'j' 

avgnumcas         average number of casualties per month over all scenarios 

avgevac            average number of casualties evacuated per month over all scenarios 

avgevac2(j)       the average number of casualties evacuated by 'j' per month over all 

scenarios 

 

*Calculate Helicopter Statistics 

numhel(j,k)       the optimal # and positioning of type 'k' helicopters at site 'j' 

 

*Calculate Distance, Speed and Time Statistics 

totdist(i,j,w)    total distance traveled (in the month) to_from 'j' for evacuation of 

patients at 'i' in scenario w 

distj(j,w)        total distance traveled (in the month) to_from 'j' for evacuation of 

patients in scenario w 

time(i,j,k,w)      total MEDEVAC time (hours) to_from 'j' to evacuate patients at 'i' in w 

time2(i,j,k,w)    time squared 

ex2(w)             E(X^2) for time 

exsquared(w)      (E(X))^2 

avgdist(j)        average total distance traveled (in the month) to_from 'j' to evacuate 

patients over all scenarios 

 

*Calculate Sampling Statisitics 

meandist(w)       mean distance traveled to_from an active 'j' in scenario w to evacuate 

patients at a casualty site 'i' 

speedall(w)       mean speed traveled to_from an active 'j' in scenario w to evacuate 

patients at a casualty site 'i' 
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meantime(w)       mean time traveled to_from an active 'j' in scenario w to evacuate 

patients at a casualty site 'i' 

avgtime            the overall average patient evacuation time 

variance(w)       variance of time traveled for scenario w 

std(w)             standard deviation of time traveled for scenario w 

finalstderror      final standard error; 

 

*Determine the Maximum Probability of Successful Evacuation of Casualties 

max_P(i,w) = 0; 

loop(j, 

loop(k, 

loop(i, 

loop(w, 

         if(P(i,j,k,w)> max_P(i,w), 

                 max_P(i,w) = P(i,j,k,w); 

         else 

                 max_P(i,w) = max_P(i,w); 

         ); 

); ); ); ); 

 

Display 'MONTE CARLO SIMULATION RESULTS',max_P; 

 

*Determine the Average Probability of Successful Evacuation of Casualties 

avg_P(i,w)=0; 

loop(i, 

loop(w, 

         totP = 0; 

         loop(j, 

         loop(k, 

                 if(P(i,j,k,w)>0, 

                         totP = totP + 1; 

                 ); 

         ); ); 

 

         avg_P(i,w) = sum((j,k), P(i,j,k,w))/totP; 

); ); 

 

Display P, avg_P; 

 

*Determine the Emplacement of MTF sites over all Scenarios 

loop(j, 

loop(xy, 

         if(sum((i,k,w), Y.l(i,j,k))>0, 

                 emplace(j,'X') = evac(j,'X'); 

                 emplace(j,'Y') = evac(j,'Y'); 

         ); 

); ); 
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*Compute the Casualty and Helicopter Statistics 

numcas_tot(w)     = sum(i, lambda(i,w)); 

numevac(j,w)      = sum((i,k), lambda(i,w)*Y.l(i,j,k)); 

numevac2(w)       = sum((i,j,k), lambda(i,w)*Y.l(i,j,k)); 

numevac3(j)       = sum((i,k,w), lambda(i,w)*Y.l(i,j,k)); 

percevac(w)       = numevac2(w)/numcas_tot(w); 

tot_evac           = sum((i,j,k,w), lambda(i,w)*Y.l(i,j,k)); 

percevac2(j)      = numevac3(j)/tot_evac; 

avgnumcas         = round(sum(w, numcas_tot(w))/card(w)); 

avgevac            = round(sum(w, numevac2(w))/card(w)); 

avgevac2(j)       = round(numevac3(j)/card(w)); 

 

*Compute the Helicopter Statistics 

numhel(j,k)      = sum(s, s.val*X.l(j,k,s)); 

 

*Compute the Distance, Speed and Time Statistics 

totdist(i,j,w)     = sum(k, Y.l(i,j,k)*dist_pu(i,j,k,w)*2)/lambda(i,w); 

distj(j,w)         = sum(i, totdist(i,j,w)); 

avgdist(j)         = sum(w, distj(j,w))/card(w); 

time(i,j,k,w)      = evac_time(i,j,k,w)*Y.l(i,j,k); 

time2(i,j,k,w)    = power(time(i,j,k,w),2); 

meandist(w)       = sum((i,j,k), Y.l(i,j,k)*(2*dist_pu(i,j,k,w)))/(sum((i,j,k),Y.l(i,j,k))); 

speedall(w)       = sum((i,j,k,t),(vel(i,j,k,w,t)*Y.l(i,j,k)))/(sum((i,j,k),Y.l(i,j,k))*card(t)); 

meantime(w)       = meandist(w)/speedall(w); 

avgtime            = sum(w,meantime(w))/card(w); 

 

*Compute the Scenario Sampling Statistics 

ex2(w)             = sum((i,j,k), time2(i,j,k,w))/card(w); 

exsquared(w)      = meantime(w)**2; 

variance(w)       = (ex2(w)-exsquared(w))/card(w); 

std(w)             = sqrt(variance(w)); 

finalstderror     = sqrt(sum(w,exsquared(w))/card(w)-sum(w, meantime(w))/card(w))/    

sqrt(sum((i,w),lambda(i,w))); 

 

*Display the Locations of AO and MEDEVAC sites 

Display ao, evac, emplace; 

 

*Display of the Casualty Statistics 

Display cas, lambda, numcas_tot, avgnumcas, numevac; 

Display numevac2, avgevac, percevac, numevac3, percevac2, avgevac2; 

 

*Display the Helicopter Type/Quantity Statistics 

Display numhel; 

 

*Display the Distance, Speed and Time Statistics 

Display distj, avgdist, meandist, speedall, meantime, avgtime; 

 

*Display the Scenario Sampling Statistics 

Display ex2, exsquared, std, finalstderror; 
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